CSE 490 U: Deep Learning Spring 2016

Yejin Choi

Some slides from Carlos Guestrin, Andrew Rosenberg, Luke Zettlemoyer

::::	:.			::				•••	•	:
	•		· : •	•••	• •	. •	•••	•••	• •	•
				•••				•••	: .	
					:		•••		•	• •
****			•	• •	<u>:</u> :		<u>.</u>		•	• :
				•••	• •	•			•	
			÷ : .	. : :	::	• •			:	· • .
• •	• • •	• • • •	• • •	• • •	••	• •	• •	•	•••	•
						::	::	::	÷	
• •		•		2.1	:	•••	::	•••	•	
	• • •	•••		••••	••	••	••	• •		• • •
								••		• • •
						::	22	::		
• • • •		• • • ·	• • •		•••	• •	••	••	• •	• • •
			•	Ľ.				::		
	•••	• • • •	•	687-	F.F.		: :	••	::	• •
	• • •			122.	23		• •	• •	••	
	* * * *	••••		68-6-	14		••	20		• •

Human Neurons

- Switching time
 - ~ 0.001 second
- Number of neurons
 - 1010
- Connections per neuron
 10⁴⁻⁵
- Scene recognition time
 - 0.1 seconds
- Number of cycles per scene recognition?
 - 100 \rightarrow much parallel computation!

Perceptron as a Neural Network

This is one neuron:

- Input edges $x_1 \dots x_n$, along with basis
- The sum is represented graphically
- Sum passed through an activation function g

- Why would we want to do this?
- Notice new output range [0,1]. What was it before?
- Look familiar?

Optimizing a neuron

 ∂

$$\frac{\partial}{\partial x}f(g(x)) = f'(g(x))g'(x)$$

We train to minimize sum-squared error

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})]^{2}$$
$$\frac{\partial l}{\partial w_{i}} = -\sum_{j} [y_{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})] \frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i}x_{i}^{j})$$
$$\frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i}x_{i}^{j}) = x_{i}^{j}g'(w_{0} + \sum_{i} w_{i}x_{i}^{j})$$
$$\frac{W}{w_{i}} = -\sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})] x_{i}^{j} g'(w_{0} + \sum_{i} w_{i}x_{i}^{j})$$

Solution just depends on g': derivative of activation function!

Sigmoid units: have to differentiate g

$$\frac{\partial \ell(W)}{\partial w_i} = -\sum_j [y^j - g(w_0 + \sum_i w_i x_i^j)] x_i^j g'(w_0 + \sum_i w_i x_i^j)$$

$$g(x) = \frac{1}{1 + e^{-x}} \qquad g'(x) = g(x)(1 - g(x))$$

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$

$$\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j)$$

$$g^j = g(w_0 + \sum_i w_i x_i^j)$$

Perceptron, linear classification, Boolean functions: $x_i \in \{0,1\}$

- Can learn $x_1 \vee x_2$? x_2
 - $-0.5 + x_1 + x_2$
- Can learn $x_1 \wedge x_2$?
 - $-1.5 + x_1 + x_2$

- Can learn any conjunction or disjunction?
 - $0.5 + x_1 + ... + x_n$
 - $(-n+0.5) + x_1 + ... + x_n$
- Can learn majority?
 - $(-0.5*n) + x_1 + ... + x_n$
- What are we missing? The dreaded XOR!, etc.

Going beyond linear classification

Solving the XOR problem $y = x_1 XOR x_2 = (x_1 \land \neg x_2) \lor (x_2 \land \neg x_1)$

Hidden layer

• Single unit:

$$out(\mathbf{x}) = g(w_0 + \sum_i w_i x_i)$$

• 1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

• No longer convex function!

Example data for NN with hidden layer

A target function:

Input		Output
10000000	\rightarrow	1000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	0000010
00000001	\rightarrow	0000001

Can this be learned??

A network:

Learned weights for hidden layer

Learned hidden layer representation:

Input		Η	lidde	en		Output				
Values										
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000				
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000				
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000				
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000				
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000				
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100				
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010				
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001				

Why "representation learning"?

• MaxEnt (multinomial logistic regression):

 $y = \operatorname{softmax}(w \cdot f(x, y))$

You design the feature vector

• NNs: $y = \operatorname{softmax}(w \cdot \sigma(Ux))$

 $y = \operatorname{softmax}(w \cdot \sigma(U^{(n)}(...\sigma(U^{(2)}\sigma(U^{(1)}x))))$

Feature representations are "learned" through hidden layers

Very deep models in computer vision

¹Inception 5 (GoogLeNet)

Inception 7a

¹Going Deeper with Convolutions, [C. Szegedy et al, CVPR 2015]

RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs)

- Each RNN unit computes a new hidden state using the previous state and a new input $h_t = f(x_t, h_{t-1})$
- Each RNN unit (optionally) makes an output using the current hidden state $y_t = \operatorname{softmax}(Vh_t)$
- Hidden states $h_t \in R^D$ are continuous vectors
 - Can represent very rich information
 - Possibly the entire history from the beginning
- Parameters are shared (tied) across all RNN units (unlike feedforward NNs)

Recurrent Neural Networks (RNNs)

- Generic RNNs: $h_t = f(x_t, h_{t-1})$
 - $y_t = \operatorname{softmax}(Vh_t)$
- Vanilla RNN:

$$h_t = \tanh(Ux_t + Wh_{t-1} + b)$$
$$y_t = \operatorname{softmax}(Vh_t)$$

Many uses of RNNs 1. Classification (seq to one)

- Input: a sequence
- Output: one label (classification)
- Example: sentiment classification

Many uses of RNNs 2. one to seq

- Input: one item
- Output: a sequence
- Example: Image captioning

$$h_t = f(x_t, h_{t-1})$$
$$y_t = \text{softmax}(Vh_t)$$

Many uses of RNNs 3. sequence tagging

- Input: a sequence
- Output: a sequence (of the same length)
- Example: POS tagging, Named Entity Recognition
- How about Language Models?
 - Yes! RNNs can be used as LMs!
 - RNNs make markov assumption: T/F?

$$h_t = f(x_t, h_{t-1})$$
$$y_t = \text{softmax}(Vh_t)$$

Many uses of RNNs 4. Language models

- Input: a sequence of words
- Output: one next word

 $h_t = f(x_t, h_{t-1})$ $y_t = \operatorname{softmax}(Vh_t)$

- Output: or a sequence of next words
- During training, x_t is the actual word in the training sentence.
- During testing, x_t is the word predicted from the previous time step.
- Does RNN LMs make Markov assumption?
 - i.e., the next word depends only on the previous N words

Many uses of RNNs 5. seq2seq (aka "encoder-decoder")

- Input: a sequence
- Output: a sequence (of *different* length)
- Examples?

$$h_t = f(x_t, h_{t-1})$$
$$y_t = \text{softmax}(Vh_t)$$

Many uses of RNNs 4. seq2seq (aka "encoder-decoder")

- Conversation and Dialogue
- Machine Translation

Figure from http://www.wildml.com/category/conversational-agents/

Many uses of RNNs 4. seq2seq (aka "encoder-decoder")

Parsing!

- "Grammar as Foreign Language" (Vinyals et al., 2015)

(S (NP NNP)_{\rm NP} (VP VBZ (NP DT NN)_{\rm NP})_{\rm VP} .)_S

Recurrent Neural Networks (RNNs)

- Generic RNNs: $h_t = f(x_t, h_{t-1})$
 - $y_t = \operatorname{softmax}(Vh_t)$
- Vanilla RNN:

$$h_t = \tanh(Ux_t + Wh_{t-1} + b)$$
$$y_t = \operatorname{softmax}(Vh_t)$$

Recurrent Neural Networks (RNNs)

- $h_t = f(x_t, h_{t-1})$ Generic RNNs:
- Vanilla RNNs: $h_t = \tanh(Ux_t + Wh_{t-1} + b)$
- LSTMs (Long Short-term Memory Networks): ۲

$$i_{t} = \sigma(U^{(i)}x_{t} + W^{(i)}h_{t-1} + b^{(i)})$$

$$f_{t} = \sigma(U^{(f)}x_{t} + W^{(f)}h_{t-1} + b^{(f)})$$

$$o_{t} = \sigma(U^{(o)}x_{t} + W^{(o)}h_{t-1} + b^{(o)})$$

$$\tilde{c}_{t} = \tanh(U^{(c)}x_{t} + W^{(c)}h_{t-1} + b^{(c)})$$

$$c_{t} = f_{t} \circ c_{t-1} + i_{t} \circ \tilde{c}_{t}$$

$$h_{t} = o_{t} \circ \tanh(c_{t})$$
There are marked as the set of conversely on the set of co

any ions equations:

Forget gate: forget the past or not $f_t = \sigma(U^{(f)}x_t + W^{(f)}h_{t-1} + b^{(f)})$

Forget gate: forget the past or not $f_t = \sigma(U^{(f)}x_t + W^{(f)}h_{t-1} + b^{(f)})$

Input gate: use the input or not $i_t = \sigma(U^{(i)}x_t + W^{(i)}h_{t-1} + b^{(i)})$

New cell content (temp): $\tilde{c}_t = \tanh(U^{(c)}x_t + W^{(c)}h_{t-1} + b^{(c)})$

Forget gate: forget the past or not $f_t = \sigma(U^{(f)}x_t + W^{(f)}h_{t-1} + b^{(f)})$

Input gate: use the input or not $i_t = \sigma(U^{(i)}x_t + W^{(i)}h_{t-1} + b^{(i)})$

New cell content (temp): $\tilde{c}_t = \tanh(U^{(c)}x_t + W^{(c)}h_{t-1} + b^{(c)})$

New cell content:

- mix old cell with the new temp cell

 $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c_t}$

Output gate: output from the new cell or not

 $o_t = \sigma(U^{(o)}x_t + W^{(o)}h_{t-1} + b^{(o)})$

Hidden state:

 $h_t = o_t \circ \tanh(c_t)$

Forget gate: forget the past or not $f_t = \sigma(U^{(f)}x_t + W^{(f)}h_{t-1} + b^{(f)})$

Input gate: use the input or not $i_t = \sigma(U^{(i)}x_t + W^{(i)}h_{t-1} + b^{(i)})$

New cell content (temp): $\tilde{c_t} = \tanh(U^{(c)}x_t + W^{(c)}h_{t-1} + b^{(c)})$

New cell content:

- mix old cell with the new temp cell

 $c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c_t}$

Forget gate: forget the past or not

Input gate: use the input or not

Output gate: output from the new cell or not

$$f_t = \sigma(U^{(f)}x_t + W^{(f)}h_{t-1} + b^{(f)})$$

$$i_t = \sigma(U^{(i)}x_t + W^{(i)}h_{t-1} + b^{(i)})$$

$$o_t = \sigma(U^{(o)}x_t + W^{(o)}h_{t-1} + b^{(o)})$$

New cell content (temp): New cell content:

- mix old cell with the new temp cell

$$\tilde{c}_t = \tanh(U^{(c)}x_t + W^{(c)}h_{t-1} + b^{(c)})$$
$$c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$$

Hidden state:

 $h_t = o_t \circ \tanh(c_t)$

vanishing gradient problem for RNNs.

- The shading of the nodes in the unfolded network indicates their sensitivity to the inputs at time one (the darker the shade, the greater the sensitivity).
- The sensitivity decays over time as new inputs overwrite the activations of the hidden layer, and the network 'forgets' the first inputs.

Preservation of gradient information by LSTM

- For simplicity, all gates are either entirely open ('O') or closed ('-').
- The memory cell 'remembers' the first input as long as the forget gate is open and the input gate is closed.
- The sensitivity of the output layer can be switched on and off by the output gate without affecting the cell.

Recurrent Neural Networks (RNNs)

- Generic RNNs: $h_t = f(x_t, h_{t-1})$
- Vanilla RNNs: $h_t = \tanh(Ux_t + Wh_{t-1} + b)$
- GRUs (Gated Recurrent Units):

$$z_{t} = \sigma(U^{(z)}x_{t} + W^{(z)}h_{t-1} + b^{(z)})$$

$$r_{t} = \sigma(U^{(r)}x_{t} + W^{(r)}h_{t-1} + b^{(r)})$$

$$\tilde{h}_{t} = \tanh(U^{(h)}x_{t} + W^{(h)}(r_{t} \circ h_{t-1}) + b^{(h)})$$

$$h_{t} = (1 - z_{t}) \circ h_{t-1} + z_{t} \circ \tilde{h}_{t}$$
Less parameters than LSTMs.
Easier to train for comparable performance!

Recursive Neural Networks

- Sometimes, inference over a tree structure makes more sense than sequential structure
- An example of compositionality in ideological bias detection (red → conservative, blue → liberal, gray → neutral) in which modifier phrases and punctuation cause polarity switches at higher levels of the parse tree

Recursive Neural Networks

- NNs connected as a tree
- Tree structure is fixed a priori
- Parameters are shared, similarly as RNNs

LEARNING: BACKPROPAGATION

Next 10 slides on back propagation are adapted from Andrew Rosenberg

Error Backpropagation

• Model parameters: $\vec{\theta} = \{w_{ij}^{(1)}, w_{jk}^{(2)}, w_{kl}^{(3)}\}$

for brevity:
$$\vec{\theta} = \{w_{ij}, w_{jk}, w_{kl}\}$$

- Model parameters: $\vec{\theta} = \{w_{ij}, w_{jk}, w_{kl}\}$
- Let *a* and *z* be the input and output of each node

• Let *a* and *z* be the input and output of each node

• Let *a* and *z* be the input and output of each node

$$a_j = \sum_i w_{ij} z_i \quad a_k = \sum_j w_{jk} z_j \quad a_l = \sum_k w_{kl} z_k$$
$$z_j = g(a_j) \quad z_k = g(a_k) \quad z_l = g(a_l)$$

Training: minimize loss

Training: minimize loss

Optimize last layer weights wkl

$$L_{n} = \frac{1}{2} \left(y_{n} - f(x_{n}) \right)^{2}$$

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right]$$
 Calculus chain rule

Optimize last layer weights w_{kl}

$$L_n = \frac{1}{2} \left(y_n - f(x_n) \right)^2$$

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right]$$
 Calculus chain rule

 $\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial \frac{1}{2} (y_n - g(a_{l,n}))^2}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right]$

Optimize last layer weights w_{kl}

$$L_n = \frac{1}{2} \left(y_n - f(x_n) \right)^2$$

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right]$$
 Calculus chain rule

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial \frac{1}{2} (y_n - g(a_{l,n}))^2}{\partial a_{l,n}} \right] \left[\frac{\partial z_{k,n} w_{kl}}{\partial w_{kl}} \right]$$

 $L_n = \frac{1}{2} \left(y_n - f(x_n) \right)^2$

Optimize last layer weights wkl

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right] \qquad \text{Calculus chain rule}$$

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial \frac{1}{2} (y_n - g(a_{l,n}))^2}{\partial a_{l,n}} \right] \left[\frac{\partial z_{k,n} w_{kl}}{\partial w_{kl}} \right] = \frac{1}{N} \sum_{n} \left[-(y_n - z_{l,n}) g'(a_{l,n}) \right] z_{k,n}$$

Repeat for all previous layers

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_{n}}{\partial a_{l,n}} \right] \left[\frac{\partial a_{l,n}}{\partial w_{kl}} \right] = \frac{1}{N} \sum_{n} \left[-(y_{n} - z_{l,n})g'(a_{l,n}) \right] z_{k,n} = \frac{1}{N} \sum_{n} \delta_{l,n} z_{k,n}$$

$$\frac{\partial R}{\partial w_{jk}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_{n}}{\partial a_{k,n}} \right] \left[\frac{\partial a_{k,n}}{\partial w_{jk}} \right] = \frac{1}{N} \sum_{n} \left[\sum_{l} \delta_{l,n} w_{kl} g'(a_{k,n}) \right] z_{j,n} = \frac{1}{N} \sum_{n} \delta_{k,n} z_{j,n}$$

$$\frac{\partial R}{\partial w_{ij}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_{n}}{\partial a_{j,n}} \right] \left[\frac{\partial a_{j,n}}{\partial w_{ij}} \right] = \frac{1}{N} \sum_{n} \left[\sum_{k} \delta_{k,n} w_{jk} g'(a_{j,n}) \right] z_{i,n} = \frac{1}{N} \sum_{n} \delta_{j,n} z_{i,n}$$

Backprop Recursion

$$\frac{\partial R}{\partial w_{jk}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{k,n}} \right] \left[\frac{\partial a_{k,n}}{\partial w_{jk}} \right] = \frac{1}{N} \sum_{n} \left[\sum_{l} \delta_{l,n} w_{kl} g'(a_{k,n}) \right] z_{j,n} = \frac{1}{N} \sum_{n} \delta_{k,n} z_{j,n}$$
$$\frac{\partial R}{\partial w_{ij}} = \frac{1}{N} \sum_{n} \left[\frac{\partial L_n}{\partial a_{j,n}} \right] \left[\frac{\partial a_{j,n}}{\partial w_{ij}} \right] = \frac{1}{N} \sum_{n} \left[\sum_{k} \delta_{k,n} w_{jk} g'(a_{j,n}) \right] z_{i,n} = \frac{1}{N} \sum_{n} \delta_{j,n} z_{i,n}$$

Learning: Gradient Descent

$$w_{ij}^{t+1} = w_{ij}^t - \eta \frac{\partial R}{w_{ij}}$$
$$w_{jk}^{t+1} = w_{jk}^t - \eta \frac{\partial R}{w_{kl}}$$
$$w_{kl}^{t+1} = w_{kl}^t - \eta \frac{\partial R}{w_{kl}}$$

Backpropagation

- Starts with a forward sweep to compute all the intermediate function values \mathcal{Z}_i
- Through backprop, computes the partial derivatives recursively
- A form of dynamic programming
 - Instead of considering exponentially many paths between a weight w_ij and the final loss (risk), store and reuse intermediate results.
- A type of automatic differentiation. (there are other variants e.g., recursive differentiation only through forward propagation.

Backpropagation

- TensorFlow (https://www.tensorflow.org/)
- Torch (<u>http://torch.ch/</u>)
- Theano (http://deeplearning.net/software/theano/) •
- CNTK (https://github.com/Microsoft/CNTK)
- cnn (<u>https://github.com/clab/cnn</u>)
- Caffe (<u>http://caffe.berkeleyvision.org/</u>)

Primary Interface Language:

- Python
 - Lua
- Python
- C++
- C++
- C++

Cross Entropy Loss (aka log loss, logistic loss)

- Cross Entropy $H(p,q) = -\sum_{y} p(y) \log q(y)$ Predicted prob
- Related quantities $H(p) = \sum_{y} p(y) \log p(y)$ True prob - Entropy
 - KL divergence (the distance between two distributions p and q)

$$D_{KL}(p||q) = \sum_{y} p(y) \log \frac{p(y)}{q(y)}$$
$$H(p,q) = E_p[-\log q] = H(p) + D_{KL}(p||q)$$

- Use Cross Entropy for models that should have more probabilistic flavor (e.g., language models)
- Use Mean Squared Error loss for models that focus on correct/incorrect predictions $MSE = \frac{1}{2}(y f(x))^2$

RNN Learning: Backprop Through Time (BPTT)

- Similar to backprop with non-recurrent NNs
- But unlike feedforward (non-recurrent) NNs, each unit in the computation graph repeats the exact same parameters...
- Backprop gradients of the parameters of each unit as if they are different parameters
- When updating the parameters using the gradients, use the average gradients throughout the entire chain of units.

Convergence of backprop

- Without non-linearity or hidden layers, learning is convex optimization
 - Gradient descent reaches global minima
- Multilayer neural nets (with nonlinearity) are **not convex**
 - Gradient descent gets stuck in local minima
 - Selecting number of hidden units and layers = fuzzy process
 - NNs have made a HUGE comeback in the last few years
 - Neural nets are back with a new name
 - Deep belief networks
 - Huge error reduction when trained with lots of data on GPUs

Overfitting in NNs

- Are NNs likely to overfit?
 - Yes, they can represent arbitrary functions!!!
- Avoiding overfitting?
 - More training data
 - Fewer hidden nodes / better topology
 - Random perturbation to the graph topology ("Dropout")
 - Regularization
 - Early stopping

