Understanding Patents

- Patents are commonly misunderstood in the popular press
- Typical reading: read the first page of a patent or patent application, then opine on the terrible consequences that follow
- A core goal of this course: help you critically read and understand a patent

Patent Structure

- Specification
 - Abstract
 - Background
 - Written Description
 - Claims
- Drawings

This structure is the same for an application and an issued patent.

Lifecycle of a Patent Application

1. File application (including specification, figures, and at least one claim)
2. Examiner searches
3. If no prior art, then application issues into patent
4. Otherwise, Examiner issues Office Action, rejecting claims
5. Applicant distinguishes the prior art with:
 - Argument e.g., the prior art does not teach X
 - Claim amendments
6. Go to 2

Understanding Patents

Patents are two-faced:
1. To understand the legal effect of a patent (i.e., what is invented, what is forbidden), read its claims.
2. To understand its “teachings” or effect as prior art, read the figures and written description

Reading for Legal Effect

- Read the title & abstract
- Scan the figures
- Read the first claim
- If the claim doesn’t make any sense on its own, start reading the written description, using the figures as your guide
- Every word of the claim matters
- The more words, the narrower the claim
1. A computer implemented method of scoring a plurality of linked documents, comprising:
 (i) obtaining a plurality of documents, at least some of the documents being linked documents, at least some of the documents being linking documents, and at least some of the documents being both linked documents and linking documents, each of the linked documents being pointed to by a link in one or more of the linking documents;
 (ii) assigning a score to each of the linked documents based on scores of the one or more linking documents and
 (iii) processing the linked documents according to their scores.

(Numbering added.)
Example Apparatus Claims

1. A lawn-cutting apparatus, comprising:
 an electric lawn mower;
 a solar panel configured to provided power to the electric lawn mower;
 and
 a motion controller configured to autonomously navigate the electric lawn mower about a lawn.

2. The lawn-cutting apparatus of claim 1, wherein the motion controller is configured to detect and avoid objects.

3. The lawn-cutting apparatus of claim 1, further comprising a range sensor configured to provide range data to the motion controller, the range data indicating a distance between the range sensor and a remote object.