DRAFT: Derivative Works Under the GNU General Public License?!
Ben Dugan?
1. INTRODUCTION

This article discusses the treatment of derivative works under the GNU General Public
License. It argues that the functioning of the GPL depends upon a definition of
derivative work that is significantly broader than that employed by the Copyright Act or
the courts. This over-broad definition ultimately leads to nonsensical results in the face
of many modern program development and distribution methodologies. This article
visits a number of fact-patterns to help illuminate possible weaknesses and
inconsistencies in the GPL definition of derivative work.

This article requires that readers have more than a passing familiarity with computer
software system concepts, so readers who are not well-versed in those ideas are
urged to first read Section 2, Technology Primer. Other readers can skip to Section 3.

2. TECHNOLOGY PRIMER

In this section, we describe and define a number of concepts underlying modern
computer systems technology. Understanding these concepts is central to resolving a
number of legal issues that arise in the context of open, hybrid, and proprietary models
of software development and distribution.

2.1 LANGUAGES AND MACHINES

Machine code is a sequence of instructions expressed in the native representation of a
particular computing machine. By native, we mean that the target machine can
consume and execute the instructions contained in a particular sequence of machine
code with a minimum of effort. A sequence of machine instructions is sometimes called
a program or executable. Machines are generally defined by reference to an
abstraction, called an instruction set architecture, or ISA. The ISA is an interface to the
machine, meaning that it defines the format (or syntax) and meaning (or semantics) of
the set of instructions that a given machine can execute. The syntax and semantics
that defines the set of allowable machine codes and their meanings is sometimes
called machine language.

! A version of this paper first appeared in 2006 as part of the Software Pluralism Project at the University of
Washington School of Law, available at: http://www.law.washington.edu/Ita/swp/index.html.
2 Opinions expressed herein are those of the author only. Copyright 2011 Ben Dugan.

1

http://www.law.washington.edu/lta/swp/index.html

The decision as to how best implement a given ISA is to a large degree an arbitrary
one. Historically, ISAs have been implemented in hardware, meaning that the logic
required to consume, decode, and execute machine codes that comply with a given
ISA is implemented by means of a fixed circuit. However, this mode of implementation
is by no means required. A given ISA may also be implemented by means of a
software program, and such an implementation is sometimes called a virtual
machine. This software program will itself of course just be a sequence of machine
codes that can be understood by another machine, that may or may not also be
implemented in hardware or software. For instance, it is possible (and in fact common,
nowadays) to implement a given machine that can execute programs written in
machine language X by writing a program in machine language Y that runs on (is
consumed and executed by) a machine that is implemented in hardware.

The good thing about machine languages is that they are typically relatively simple in
terms of syntax and semantics. The set of allowable machine instructions is generally
small, and the allowable formats for expressing machine instructions are typically few.
These limitations make it relatively easy to build (particularly in hardware) a machine
that implements a given machine language.

The bad thing about machine languages is the same as the good thing—that is, that
they are very simple. This makes them inefficient modes of communication, at least
from the perspective of someone who wishes to write programs that do interesting
things. Intuitively, a language containing only 100 words will be much less expressive
than one containing 100,000 allowable words, because it should take fewer words to
express a given concept in the latter (large) language than in the former (small)
language. Also, because machine languages are designed to be easily read and
decoded by mechanical means, they are often represented by way of alphabets that
are not natural for humans to read or write. The most common format used is binary—
that is, all machine codes are represented only by strings of ones and zeros. The
choice of alphabet is again an arbitrary decision. Historically, however, binary has ruled
because it is relatively straightforward to build hardware circuits that function on high
and low voltages which map nicely to ones and zeros.

2.2 COMPILERS AND HIGHER LEVEL LANGUAGES

These drawbacks with machine code led computer scientists to write programs
(initially, painstakingly in machine code) to translate programs written in higher-level
programming languages into programs consisting only of machine code. These
programs are called compilers. A compiler is just a program that takes as input a code
sequence in one language and translates and outputs a corresponding code sequence
in second language. That second language will typically be machine code, but it need
not be. The second language is often called the source language and is typically of a
much higher level than machine language. That is, its alphabet is comprised of
symbols that are familiar to humans, such as alphanumeric characters; its built-in

2

commands or instructions will be represented in words (e.g. "ADD") or symbols (e.g.
"+") that have conventional meanings; and they provide for the straightforward
expression of useful, commonly occurring programming idioms, such as repeated
execution or functional decomposition.

2.3 MODULES: SOFTWARE DECOMPOSITION

There are two ways to think about program decomposition. First, all modern
programming languages provide some mechanism for logical decomposition. The core
principle behind logical decomposition is the separation of interface (sometimes also
called specification) from implementation (sometimes also called representation). The
interface to a module is everything and anything that a client of that module needs to
know to use the module. The interface is a description of what the module can do. The
implementation of a module, on the other hand, is the inner workings (generally data
structures and instructions) that actually perform the work promised by the interface
description. Consider, for example, a television. The interface consists of the switches,
knobs, and plugs on the outside of the television. The implementation consists of the
guts of the television. As users, we need only to understand the interface: how to plug
it in, turn it on, and twiddle the knobs. We don't need—indeed, probably don't want—to
know how the television works its magic. By decoupling the interface from the
implementation, separate parties can work on separate parts of large system by
knowing only about agreed-upon interfaces. Television set designers only need to
know about the interface to the electrical system—the shape of the plug and the
voltage provided—in order to design a television set that any consumer will be able to
plug into their wall socket. They do not know or care about how the electricity is
generated, where it comes from, and so on.

The most basic form of logical decomposition is procedural or functional
decomposition. Every modern, high level programming language supports functional
decomposition in some manner. A function is just an abstraction for a set of
instructions to perform a common task, which has been given a convenient name by
the programmer. For instance, a programmer may create (define) a function called
area that knows how to compute the area of a rectangle. In defining this function, that
programmer has in some sense added a new word to the vocabulary of the
programming language. The programmer can later invoke the function simply by using
that new word in their program. Other forms of logical decomposition include modules,
abstract data types, class definitions, and packages. All modern, high level
programming languages support one or more of these forms of logical decomposition.
While the details of these forms is beyond the scope of the article, they are all methods
for creating software components that are larger than single functions or procedures.

In addition to logical decomposition, modern programming languages allow for physical
decomposition. The most common mechanism for performing this kind of
decomposition is by breaking a single large program into a series of files. Each file will

3

typically contain one or more logical program components. For example, a single file
might contain a group of related functions that can then be called from within other
source files. Some mechanism for program decomposition is central to the ability to
build large programs. Without it, it is hard to imagine how two or more programmers
could work on a single program at the same time.

2.4 COMBINING PHYSICAL MODULES: STATIC AND DYNAMIC LINKING

Program decomposition, however, complicates the process of source to machine code
translation. In a world where every program is contained in a single source file, the
compiler knows everything it needs to know to translate the program from source to
machine code. In a world where a program is broken down into two or more source
files, the compiler will not know how to properly translate function invocations that
reference functions that are defined in other source files. At a high level, a compiler
needs to translate a function invocation into a "jump"” to a different instruction address
within the executable program. However, the compiler cannot know the machine
address of a defined function unless it knows the layout of the entire executable, which
it cannot know until all the source files have been compiled and merged.

The typical solution to this problem is simply to defer the resolution of function names
to machine addresses to another program, known as a static linker. In this scheme, the
compiler translates a given source file into a corresponding object file. An object file
contains machine code, as well as some information about functions and other names
that are defined by (or functions and other names that are referenced by) the given
object file. A second program, called a linker, is then used to make a final resolution of
names to numerical addresses. At a high level, the linker takes all of the object files,
and for each object file stitches up unresolved references to names that are defined in
other object files. After stitching up these names, it concatenates the various machine
code sequences into one long machine code sequence, which is now fully executable
by the target machine. If it encounters names that are not defined in any object file, it
typically reports an error, because this means that the programmer of some object file
has attempted to invoke a function or otherwise reference names that are not defined
in any object file that comprises the executable.

Static linking works well until we consider that many programs share a considerable
amount of standard code. This commonly used, shared code is typically placed into
libraries, which are seldom changed, well-known repositories for useful functions that
are used by a wide variety of programs. Examples include libraries for performing input
and output (from keyboards and other input devices and to the screen or other output
devices), mathematical functions (such as sine, cosine, logarithms, etc), and so on.
One way to think about a library is as a widely-advertised, well-known object file.

Consider what happens when a number of programs are each linked against a given
library. First, this approach is wasteful in terms of disk space, because each program
contains a section of identical code. While this may not seem significant in today's
world of large disks, it does begin to pose a problem on systems with limited storage,
where hundreds or even thousands of programs are all statically linked with a given
library or libraries. Second, suppose that the vendor wishes to fix a bug in a given
library. The vendor can redistribute the library, but then the end-users would have to
re-link that library to each of the hundreds or thousands of programs that may use it.
Alternately, the vendor can relink the programs for the user, but they may not be in a
position to do so if some of the programs are licensed from third parties. And even if
the vendor were willing to relink, they would now need to re-distribute and install a
large number of programs, rather than just a single library.

The solution to these problems is to employ dynamic linking. In a world of dynamic
linking, programs are not linked until run-time—that is, external name references are
left unresolved until the program is loaded, or even until a given function is referenced
for the first time. Dynamically linked programs incur some cost at run time—either due
to longer startup times because the linking is done when the program is loaded, or as a
small cost each time an unresolved name is referenced for the first time. The benefit of
dynamic linking, of course, is that multiple programs can now truly share the same
library—each system will only have a single copy of each dynamically linked library
shared by a plurality of running programs. For this reason, dynamically linked libraries
are sometimes also called shared libraries (in the *N*X world, for instance). Another
benefit is that upgrading a dynamically linked library (e.g. due to a bug-fix) is often as
simple as just replacing the library on disk, and restarting the system. Because
programs are automatically linked each time they are run, no tedious static re-linking of
programs is required.

2.5 BINDING

Static and dynamic linking are instances of a more general concept known as binding.
Binding can be thought of as the process of associating, in some way, nhames with
values in a software system. Systems can be distinguished based on when they
perform various kinds of binding. In the case of static linking, function names are
bound to numerical function addresses more or less at compile time (or more precisely,
after compile time, but before run-time). In the case of dynamic linking, binding doesn't
take place until run-time.

Internet domain name resolution is another example of the binding concept. The
Domain Name Service (DNS) allows textual, easy-to-remember domain names (like
"yahoo.com") to be translated into numerical IP addresses at run-time. Deferring
binding has the benefit of making systems more flexible at the cost of some run-time
overhead. In the DNS example, imagine if domain names were translated at compile
time. In that case, anytime someone wanted to re-map a domain name to a new IP

5

address, all programs that referenced that name would have to be re-compiled.
Moreover, a large class of networking programs, such as web-browsers, would be
dependent upon relatively static associations between domain names and IP
addresses, greatly limiting their utility.

Object oriented programming languages are another example of systems that rely on
late binding. One of the hallmark features of object oriented programming languages is
subtype polymorphism. A programming language that is subtype polymorphic allows a
programmer to write code that will function with data objects of a type that is not known
until runtime. Object oriented programming languages do not depend on knowing the
particular representation of objects at compile time. This means that programmers may
write code that is highly abstract, in that it works with many different (concrete) types of
objects that all share common interfaces. This flexibility and expressiveness, however,
comes at the cost of deferring binding until runtime. Specifically, the process of looking
up and determining the correct behavior for a given object of a particular type is
deferred until runtime. This process is in many ways analogous to that of dynamic
linking that occurs on a "demand basis" (as opposed to dynamic linking that takes
place at load-time). It differs from demand-linking, however, because object oriented
systems allow for the binding to be different every time a particular function is
invoked—in other words, the particular behavior for a given object must be (in the
worst case) re-determined every time that behavior is invoked (because it is not known
if the current object is or will be the same as the subsequent object).

3. THE GPL AND DERIVATIVE WORKS

The following section describes some common program development scenarios and
their treatment under one of the most commonly used open source licenses, the GNU
General Public License (GPL). At a high level, the GPL allows the licensee to copy,
modify, and distribute the licensed program under certain conditions. Copying,
modification (or the creation of derivative works), and distribution are of course three of
the exclusive rights granted to authors under the Copyright Act of 1976. 17 U.S.C.
§106. The first GPL requirement is that software distributed under the terms of the GPL
be accompanied by source code. The second condition requires that modifications of
the original program be distributed under the same terms as the GPL itself. Section 2
of the GPL grants the licensee the right to "modify [their] copy ... of the Program, thus
forming a work based on the Program, and copy and distribute such modifications or
work" provided that the modified work is also licensed under the terms of the GPL. This
latter requirement makes the GPL reciprocal (or viral, depending on the reader's
political viewpoint) and guarantees - if it functions as intended - that subsequent
versions of an initial code-base remain open or free, where openness here is used to
refer to the availability of source code coupled with the right of end-users to make
changes to that code. The critical observation is that the requirement that the GPL be
applied to a new work is triggered when 1) a derivative work is created and 2) that
derivative work is distributed. The efficacy of the GPL depends, therefore, on the

http://www.linux.org/info/gnu.html
http://www.linux.org/info/gnu.html
http://www.copyright.gov/title17/
http://www.copyright.gov/title17/

breadth of the definition of derivative work. In the sections that follow we first survey
the various definitions of derivative work as employed by the courts, and then analyze
the GPL's effect in the face of a variety of commonly occurring software development
patterns.

3.1 LEGAL BACKGROUND

Under the Copyright Act, a derivative work is defined as "a work based upon one or
more preexisting works, such as a translation, musical arrangement, dramatization,
fictionalization, ..., or any other form in which a work may be recast, transformed, or
adapted. A work consisting of editorial revisions, annotations, elaborations, or other
modifications which, as a whole, represent an original work of authorship, is a
‘derivative work'." 17 U.S.C. 8101. The courts have unfortunately been less than clear
and in many cases inconsistent in their interpretation of this provision in the computer
systems context. An exhaustive legal analysis of derivative works in the computer
system context is beyond the scope of this article, but the three cases (all taken from
the video game context) discussed below should provide a feel for the courts' struggles
with the concept.

In Midway Mfg. Co. v. Artic International, Inc., the court confronted the derivative work
guestion in the video game context. 704 F.2d 1009 (7th Cir. 1983). In this case, the
defendant marketed a circuit board that could be installed to speed up the gameplay of
an arcade game manufactured by the plaintiff. The court held, with minimal discussion,
that the speeded-up video game was a derivative work of the original video game, and
that the defendant infringed the plaintiff's derivative work right.

Almost a decade later, a different court, on very similar facts reached the opposite
conclusion. In Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., the defendant
developed a hardware add-on module that enhanced the game play of a Nintendo
video game system. 964 F.2d 965 (9th Cir. 1992). The court adopted a particularly
narrow definition of derivative work: "[it] must incorporate a protected work in some
concrete or permanent ‘form'." Id. at 967. The court held that because the add-on
module did not incorporate the protected work (here, the audiovisual video game
displays) in any way, it did not infringe Nintendo's right to create derivative works.

The Nintendo court distinguished Midway by pointing out that the circuit board
distributed in Midway substantially copied and replaced a portion of the original video
game circuitry, whereas the Nintendo add-on did not actually incorporate any of
Nintendo's protected expression. The court then buttressed this distinction with a
market effects test, noting that the Nintendo add-on did not actually supplant demand
for the Nintendo game console, whereas the plaintiffs in Midway were being deprived
of potential additional profits reaped by licensees of the arcade video game. Finally,
the court made a policy argument, noting that holding the add-on infringing would
unduly chill the market for improving innovations, such as plug-in spell checkers for
existing word-processing programs.

http://www.copyright.gov/title17/
http://www.copyright.gov/title17/

Finally, in Micro Star v. Formgen Inc., the court held that a distributor of new "levels"
for a video game infringed the creator's derivative work right. 154 F.3d 1107 (9th Cir.
1998). At first glance, this case seems again similar to the above. The alleged infringer
simply marketed add-on modules, that an end-user could employ to create variations
on the original work. So why the (different result? The court
distinguished Nintendo because the levels distributed in this case actually described
"sequels” to the original game, whereas the add-on module in Nintendo merely
enhanced the gameplay. In Nintendo the gameplay was still generated by the Nintendo
game console whereas in Formgen the new levels actually directed a new telling of the
video game's story. The court focused especially on the architecture of
the Formgen game system, which consists of a rendering engine, an image library, and
one or more files ("MAP" files) that describe the game levels and their content. The
MAP files, therefore, define the very metes and bounds of the video game's story. And
since Formgen created the initial video game story with their original MAP files, any
other MAP files must tell a related and derivative story—a sequel, in a sense—of the
original.

Whether or not we find the analysis in these cases convincing, they do teach us
something about the way courts address the derivative work problem. First, a
derivative work must incorporate the protected work in some manner. Second, courts
will fall back on an analysis that resembles the substantial similarity test familiar under
the reproduction right. Third, courts will look at the market impact of the work. An
alleged derivative that does not supplant demand for the original is less likely to be
held infringing. Finally, courts recognize that an over-broad definition of derivative work
may chill the market for follow-on innovations.

3.2 MODIFYING A SOURCE FILE

Example 1.0: Starting with the most simple case, suppose a programmer, X, has in
their possession a copy of program G. G consists of a number of source files (physical
modules) and is licensed to X under the GPL. Now suppose that X modifies program G
by adding and/or deleting a number of lines of code to one or more of the source files
that make up G. In doing so, X creates a new program G'. Given that G is licensed to X
under the GPL, will the modified program, G', also be subject to the GPL?

Initially, the answer to this question must be in the negative. Recall that the GPL's
demand that it be applied to a derivative work of the original program is only triggered
upon the distribution of a work that is derivative of the original program. So even
assuming for the moment that G' is a derivative work of G, X does not need to license
the modified version in absence of distribution. The Frequently Asked Questions about
the GNU GPL (hereinafter FAQ) confirms this analysis: "The GPL does not require you
to release your modified version. You are free to make modifications and use them
privately, without ever releasing them... But if you release the modified version to the
public in some way, the GPL requires you to make the modified source code available
to the program's users, under the GPL." Therefore, so long as X does not release - and

thereby exercise the distribution right - G' need not be subjected to the terms of the
GPL.

Example 1.1: Now, assume the same facts as above, but that X now wishes to
distribute copies of G', as might a traditional software vendor. Since distribution is
given, the analysis now turns on whether G' is a derivative of G. If so, G' must also be
licensed under the GPL, meaning that X must provide copies of the source code along
with any translation (executable) they may distribute.

This fact pattern is probably the canonical case envisioned by the drafters of the GPL.
G' surely qualifies as a derivative of G under the legal framework described above. G'
incorporates much if not all of the original work G. G' is certainly substantially similar,
given that we are assuming only a small number of lines of code have been added.
Finally, G' can be viewed as a replacement for G, thereby denying market share to the
author of G. Hence, because X is distributing a derivative of G, X must license G'
under the terms of the GPL.

3.3 ADDING A FILE TO A COLLECTION OF FILES

Example 2.0: Suppose that X modifies the original program G by simply adding a new
source file S. S contains some new functionality which X wishes to add to the existing
functionality of G. Depending on the architecture and programming language used in
G, it may be necessary for X to also make at least a small modification to one the
source files in G, in order to invoke the functionality contained within S. In this case, it
is useful to think of the resulting work as the sum of its constituent parts. First, S is just
the new source file added by X. Second, G' is just the original code-base G, plus some
(possibly minor) modification required to invoke functions located in S. Note that G' is
similar in many ways to the simple example given above, except that the code added
makes one or more external references to functions located in module S. The resulting
work can be expressed as G' + S. In order to run their new program, X will need to
compile all of the modules in G' + S and link them together to build an executable, E.
We will use the notation C(x) to describe the object file that results from compiling a
given source file x. For instance, C(S) is the object file that results from compiling
source file S. Hence, E = C(S) + C(G)).

Assume that E is statically linked, and suppose that X wishes to distribute E. Must E be
licensed under the terms of the GPL? Again, if E can be considered derivative of G,
then the answer must be yes. Recall that E = C(S) + C(G"). We know from the analysis
above that G' is a derivative work of G. The copyright statute tells us that "translations”
are considered derivatives of original works. 17 U.S.C. 8101. Assuming that the
process performed by the compiler qualifies as translation, then C(G'") surely qualifies
as a derivative work of G'. And finally, since E is statically linked, at the time of
distribution it literally incorporates C(G'), which we have determined is derivative of the
original work G. E therefore can be considered a derivative work of G and must be
distributed under the terms of the GPL, meaning that source code G' and S must be
provided.

Example 2.1: Now suppose that X wishes to license S (containing the bulk of the new
functionality of G' + S) under different terms. In particular, X might want to distribute S
under a license that does not entitle the licensee to view the source code in S. X might
be able to do this by first distributing just the portion of E defined by E - C(S). In other
words, X might choose to distribute just C(G'). This portion of E will likely not be a
functioning program, and, under the above analysis it will be a work based on G, and
therefore also subject to the GPL. And then suppose that X separately distributes the
object module C(S). Is this module subject to the GPL? Must X provide the
accompanying source code, S?

The GPL itself admits to the possibility that certain kinds of works, independently
distributed, may not be subject to the terms of the GPL. Section 2 of the GPL states:
"[The requirement that the modified work be licensed under the GPL] apply to the
modified work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works." In our scenario, then, if S can be considered an
independent work of G' and if S is distributed separately from G', then S need not be
licensed under the terms of the GPL. Given that it is being independently distributed,
the answer then depends on whether S can be considered an independent work of
G'. Independence is nowhere defined in the GPL, but it seems reasonable to assume
that the drafters meant the term to encompass the set of works that are not derivative
of the original work.

The answer depends, then, on whether or not S can be considered a derivative G'. On
the one hand, if we can make this case look like Formgen, then there might be a good
argument for deciding that S is a derivative of G'. For example, suppose that G' is a
digital signal processing program, consisting of an engine module that applies a variety
of filters to a digital sample. Assume further that a collection of pre-existing filter
modules already exists in G'. So the interesting thing about G' is not really its
application engine, but its collection of filter modules—just as the interesting thing
about the Formgen video game was the stories described by the MAP files. Arguably,
now, a new filter provided by module S could be viewed as a derivative of at least
some of the original filters provided by G'. And while S does not necessarily literally
incorporate any portion of G', it is at least substantially similar to some of its
components. Moreover, the combination of S and G' could certainly be viewed as a
market substitute for G' alone. In this analysis then, S is arguably a derivative of G',
and X would need to distribute it under the terms of the GPL.

Even here, however, there are features of copyright law that may stand in the way of
this conclusion. The first is the bar on protection for processes and methods of
operation in section 102(b). Recall that the MAP files in Formgen described the telling
of the video game's story. And in holding that the story was protectable subject matter,
other MAP files - that told variations on that story - were necessarily derivative works.
A digital signal processing system, on the other hand, is at its core highly functional.
And the filters themselves are written by highly efficient and arguably rote

10

implementations of mathematical formulas. Therefore, under section 102(b) and its
more rigorous manifestation in the Altai Abstraction-Filtration-Comparison test
(Computer Associates International v. Altai, 982 F.2d 693, 23 U.S.P.Q.2d 1241 (2nd
Cir. 1992)), it is doubtful that there is very much copyrightable subject matter in the
original digital signal processing system as defined by G'. If G' contains only minimal
copyrightable expression, then the argument that S is in some way a derivative
becomes even harder to make. The lesson perhaps is that architectural similarities
alone are insufficient to show derivation. Here, the question was not resolved by
reference to the architectural similarities between the Formgen system and our system,
but by reference to the strength of the copyrightable expression in the parent system.

The fair use limitation provides another counter-argument to a finding of infringement
in this example. The fair use analysis is codified in section 107 of the act, and directs
courts to look at four factors: the purpose and character of the use, nature of the
copyrighted work, amount and substantiality of the portion used, and the market effect.
The first factor weighs against X, assuming he intends to sell C(S), because
commercial use typically works against an alleged infringer. The remaining factors,
however, may work in X's favor. The second factor restates the principle discussed
above, that creative works of authorship are entitled to higher degrees of protection.
Here again, the analysis will turn on the substance and strength of copyrightable
expression in G'. And if G' is seen as primarily functional, there again will be little
copyrightable expression to infringe. The third factor focuses on the amount of the
original work used in the allegedly infringing work. Here, assuming that modern
software engineering principles are followed, the amount of literalcopying of code in G’
is surely minimal. The relationship between S and G' is just that S makes function calls
into G'. Therefore, S makes use just of the function names defined by G', and doesn't
actually copy any portions of the G's program text. Finally, the market effect analysis
also works in X's favor, because S does not supplant the market for G. In fact, anyone
who wishes to use S has to also download a copy of G'.

Of course, even if we decide that S is not a derivative of G' (or any portion of it), the
original author may proceed under a contributory infringement theory. Since the
executable E is a derivative work of G created by the end user, the owner of the
copyright in G could claim that even if S alone is not a derivative work of G, that X is
contributorily infringing their derivative work right because they are inducing, causing,
or materially contributing to infringing conduct of another. Even assuming that X has
the requisite knowledge of the infringing activity, there is a problem with this argument
related to the grant of rights under the GPL. Because the GPL grants the end-user in
this situation rights to make derivative works of G', the owner of the rights in G' cannot
argue that the end-user is actually infringing their derivative work right. Without
underlying infringement by the end-user, any claim to contributory infringement must
fail.

To be sure, using such a strategy to circumvent the GPL seems clumsy. In order to

obtain a functioning program, the end-user would first have to obtain C(G"). Then, they
would have to separately obtain C(S), and link that module to C(G’) to create an

11

executable. The executable E, that is created by the end-user, is a derivative of G, as
discussed above, but the critical distinction here is that X did not distribute that
derivative work. X only distributed the building blocks required to build E. One of those
building blocks, C(G"), is distributed under the terms of the GPL, as required. The other
building block, C(S) may be distributed under another, more restrictive license,
because if we believe the above analysis, C(S) is not necessarily a derivative work of
G.

However, as times change we encounter new ways to build and distribute software. In
particular, software systems are becoming increasingly modularized, supporting
increasingly high levels of reuse and sharing. The distribution of software has also
become increasingly fluid as networks become a dominant distribution medium. In
many cases, the monolithic executable that lives in a single address space is being
supplanted by networks of clients and servers, intercommunicating in order to provide
a service for an end user. In this way, the architecture of programs begins to sprawl
across machines and the networks that connect them, making the line drawing
exercises demanded by a license such as the GPL increasingly difficult. Example 2.1
should therefore be viewed as more than an odd academic exercise, because the
issues it raises will reappear in the real-world software scenarios we shall visit in the
sections that follow.

3.4 STATIC OR DYNAMIC LINKING: DOES IT MATTER?

Example 3.0: This example is the same as example 2.1 except that it takes place in a
dynamically linked universe. The main difference is that the executable E only exists as
a physical combination of modules when the program is being executed. Until the
program is launched, there is only a collection of disparate object modules residing on
disk. When the program is launched, these object modules are stitched together to
form something that we would call an executable. So it should be clear that dynamic
linking in some ways makes the potential weakness in the GPL noted above easier to
exploit, because the vendor of software only ever ships unconnected object modules,
and the "combining" of those modules does not take place until the end-user activates
the program.

The results in this example seem to be the same as above. As long as module C(S) is
not considered to be a work derived from G, then it is not within the scope of the GPL.
If X can distribute C(S) separately from C(G'), and the combination of C(S) and C(G') is
only made by the end-user, X should be free to license C(S) under whatever terms she
chooses. And the distribution scheme seems a fraction less “kludgey” than the one
employed in example 2, because the step of combination (linking) occurs transparently
to the user of a dynamically linked system.

Much has been made of the issue of how dynamic linking bears upon the applicability
of the GPL. Some commentators contend that a first module dynamically linked to a
second, GPL'ed module is not necessarily subject to the GPL. (Lawrence Rosen, for
example). The drafters of the GPL, on the other hand, argue that the first module in

12

http://www.law.washington.edu/lta/swp/bibliography.html#Rosen

this instance would be subject to the GPL, regardless of whether the two modules
were statically or dynamically linked. In the GPL FAQ they note, "If the modules are
included in the same executable file [static linking], they are definitely combined in one
program. If modules are designed to run linked together in a shared address space
[dynamic linking], that almost surely means combining them into one program." They
go on to say that if modules communicate with each other over networks, they are
unlikely to be considered derivatives of each other. In a way, framing the question in
this manner has been unfortunate, because it focuses the inquiry upon the mechanism
of inter-module communication rather than on the more metaphysical - and legally
significant - inquiry into whether one module is in fact a derivative of the other. And as
we have seen above, courts answer this question not by reference to the technology
underlying the work but by reference to qualities such as incorporation and substantial
similarity, tempered by subject matter limitations, fair use defenses, and public policy
rationales.

In short, the debate over static and dynamic linking simply misses the mark. As we
shall see in our next example, using inter-module communication as the basis for a
derivative work analysis will lead frequently to counter-intuitive and nonsensical results.

3.5 THE PROBLEM WITH PLUGINS

A plugin is a module of code that can be easily - from the end-user's perspective -
installed and run within an existing application. A plugin generally expands or extends
the functionality of the original program in some way. Many modern application
programs contain some form of plugin architecture, so that third parties can write
extensions for the underlying application. For example, the Mozilla Firefox browser has
a plugin architecture. This allows, for instance, Adobe Systems to offer its Acrobat
Reader as a plugin for Firefox. After installing the plugin, if a user loads a PDF
document, Acrobat Reader will launch and appear within the browser window. Another
example is the Flash Player, which allows users to view animations within their web
browser. In this way, the designers of Firefox can enable (or rather, allow third parties
to enable) the viewing of novel content types within the friendly confines of the
browser, but without disturbing the core architecture and design of the browser itself.

Example 4.0: Program P, licensed under the GPL, contains a plugin architecture that
allows users of P to dynamically download and run object modules that extend P's
functionality. X writes a plugin by creating a source module S, compiling it, and
advertising the resulting C(S) on his website. Does X have to license the plugin C(S)
under the terms of the GPL?

This is yet another, but more naturally occurring example of the GPL's difficulty in
dealing with distribution of related modules that are not assembled prior to distribution.
In this way, the analysis here does not differ greatly from that of Examples 2 and 3,
above. The primary difference is that X is not even distributing G', which recall was a
slightly altered version of the original program G, modified so that S could be
integrated into it. Here, the end-user has presumably obtained the analog of G' (P),

13

http://www.gnu.org/licenses/gpl-faq.html

from a third party. The vendor is only writing and distributing the plugin. The combined
work, if there is one, does not come into existence until the plugin C(S) is installed and
running on the end-user's machine. So the GPL need only be applied to S if S,
standing alone, can be viewed as a derivative of P.

The GPL FAQ takes an explicit position on this particular scenario. It states that the
result "depends on how the program invokes its plugin. If the program uses fork and
exec to invoke plugins, then the plugins are separate programs, so the license for the
main program makes no requirements for them." On the other hand, "If the program
dynamically links the plug-in ... they form a single program, which must be treated as
an extension of both the main program and the plugin." The terms fork and exec refer
to UNIX system calls that a running program uses to launch another program. Every
modern operating system provides some equivalent set of system calls. The GPL
drafters therefore draw the boundary around components that are linked together,
operate in the same address space, and have some intimate level of interaction and
communication.

To understand the implications of this method of boundary drawing, consider for a
moment the Acrobat Reader plugin for Firefox, and assume that the browser is
licensed under the GPL. The plugin offers its own set of user interface buttons and is
capable of rendering file formats that are exotic to Firefox. Does this seem like a
derivative work of Firefox? Whatever our intuition may tell us, the answer depends -
according to the GPL's drafters at least - on the particulars of the Firefox plugin
architecture. If the plugin architecture launches plugins and runs them in separate
address spaces as separate, running executables, then the GPL does not consider
Acrobat Reader a derived work of Firefox. On the other hand, if the plugin is
dynamically linked to Firefox, then the GPL urges the opposite characterization. This
seems to fly in the face of common sense, which tells us that Acrobat Reader is not a
work derived from Firefox.

The following thought experiment demonstrates the absurdity of the GPL approach.
Imagine taking the Firefox source code and modifying it in such a way that it is
encapsulated in a plugin, called Fireplug. Common sense and the law tell us that
Fireplug is a derivative work of Firefox, based simply on the fact that Fireplug
incorporates all or most of the Firefox codebase. Now, when we plug Fireplug into
Firefox, we essentially have a Firefox browser running within a Firefox browser. And
depending on the Firefox plugin architecture, the GPL drives us to incompatible
results. If plugins are dynamically linked, Fireplug is a derivative work. This is the right
result, but the reasoning is exactly wrong. Fireplug is a derivative work because it
incorporates and is substantially similar to Firefox, not because of a decision made by
the designer of the Firefox plugin architecture. On the other hand, if plugins are
launched as separate programs, then Fireplug suddenly is not a derivative work, even
though this result is counter the common sense result above. Clearly, the mechanism
of a given plugin architecture are analytically unhelpful and misleading in answering
the derivative work question.

14

http://www.gnu.org/licenses/gpl-faq.html

3.6 OBJECT ORIENTED SYSTEMS

Our next example concerns the GPL's applicability to object-oriented software
systems. The central programming abstractions provided by object-oriented languages
are those ofobjects and classes. Objects represent real, functioning program entities
that contain data and can respond to certain messages. Classes are a means of
defining and organizing a world of objects. A class defines the data and behaviors of a
group of objects. For example, a programmer may wish to build a student database
application for a university. In doing so, she may create a class called Student that
defines the relevant characteristics of a student. These characteristics may include
data such as name, student ID number, and GPA. They may also contain behaviors
that students can perform. For instance, a student might know how to take exams,
complain, and ask questions. Finally, classes may relate to each other by means
of inheritance. In our example, our programmer might create
a subclass of Student called GradStudent that specializes and/or extends the
behaviors of Student in some manner. For instance, a GradStudent may prefer to
complain about his or her advisor, whereas a generic Student may typically prefer to
complain about grades. Inheritance allows the programmer to easily reuse much of the
functionality of existing classes, by defining a subclass that overrides certain default
behaviors of its superclass. (Some object-oriented languages, C++ for example, use
the term base class for superclass and derived class for subclass. For obvious
reasons, we shall avoid the use of those terms here.)

Example 5: Programmer X wishes to write a class D, that is a subclass of existing
class B. Class B is subject to the terms of the GPL. If X distributes D, does it have to
be licensed under the terms of the GPL?

The answer given in the GPL FAQ is short and to the point: "Subclassing is creating a
derivative work." In our example, this makes D a work derived from B, and thereby
makes D subject to the terms of the GPL upon distribution. This approach attempts to
further broaden the reach of the GPL, but it again leads to counter-intuitive results.

Typical object oriented programming languages include a standard class hierarchy.
This hierarchy provides a framework within which application developers can build their
programs. The standard classes typically provide useful classes that represent user
interface elements (e.g. windows, buttons, etc.), collection classes (for handling
collections of data), and input-output abstractions (e.g. files and networking
connections). In many object oriented languages, each class must be a subclass of
exactly one superclass. And for this reason, the class hierarchies are rooted by a
highly generic, standard class called Object. (The question of the superclass of Object
is beyond the scope of this article.) The class Object describes only the most general
properties and behaviors. For instance, in Java, the class Object only performs a
handful of functions. In Java, every class is a subclass (directly or indirectly) of the
Object class. Under the GPL approach, then, every program written in Java is a
derived work of Object, because every program written in Java by definition consists of
classes that inherit from the Object class.

15

http://www.gnu.org/licenses/gpl-faq.html

Such a result certainly sounds extreme. The Object class in Java is extraordinarily
generic and bears little relation to many of the classes that inherit from it. To be sure,
all Java classes can perform the behaviors defined by Object, precisely because they
are subclasses of Object, but this does not necessarily imply that those subclasses
should be considered derived works under copyright law. It would be as if an author
writes an incredibly generic, one-sentence long "story" along the lines of "There are
some characters who do things and stuff happens to them" and then claims that just
about every novel that follows is a work derivative of his story. From a naive
perspective, almost every story (perhaps with the exception of Waiting for Godot) can
be considered derivative of our short story because it borrows or incorporates the
same essential plotline. Obviously, though, this is not the result that we obtain under
the law. Principally, the reason is that the short story would not be considered
copyrightable subject matter, either because it does not meet the minimum creative
threshold, or because it is already in the public domain, or because the idea of the
story has merged with its expression.

As usual, the answer in this example depends on questions of copyrightability,
incorporation, substantial similarity, market demand, and public policy. As a general
matter, in the case of inheritance in object oriented systems, a subclass trivially
incorporates (and is substantially similar) to its superclass. The analysis should then
turn, to a larger degree, on questions of copyrightability of the superclass, market
demand, and public policy. For example, if the class B is highly generic (as in Java's
Object class), it is unlikely that it would even be considered copyrightable subject
matter under the 102(b) bar. On the other hand, if B is highly specialized—as are
classes that we find on the fringes or leaves of a class hierarchy—there may be a
stronger argument that they contain substantial copyrightable subject matter. This
argues, then, for a finding that D is a derivative of B. Even here, though, a market
demand analysis might argue against a finding of derivation. Class D will not supplant
demand for class B, simply because it makes no sense to deploy D in the absence of
B.

3.7 NETWORKED SYSTEMS

Example 6: Software vendor V who distributes proprietary software wishes to add the
ability to manipulate digital sound files. Being short on time, V finds a GPL'ed sound
library, dresses it up as a server, and gives away the server under the GPL.
Meanwhile, their core, proprietary application is modified to communicate with the
"sound server" in order to perform sound processing tasks. End-users who wish to
exploit the sound functions have to install the proprietary code alongside, or at least on
the same network as, the GPL'ed sound server. Both of these items are "distributed”
by the vendor.

Is the core, proprietary application now bound by the terms of the GPL? No, certainly
not, even according to the GPL FAQ. The FAQ notes that "... sockets ... are
communication mechanisms normally used between two separate programs. So when
they are used for communication, the modules normally are separate programs." In

16

many ways, this example does not seem controversial, but we bring it up to again
emphasize the inadequacy of the reasoning by which the GPL drafters reaches their
result. As with plugins and object-oriented systems, above, the GPL FAQ writers seem
to reach this conclusion because of the way the two programs interact. Because the
two works are two separate programs interacting over a network, they are somehow
different from two modules interacting by means of function calls within an address
space. As usual, this is not necessarily so. It is easy to construct an example where the
work, viewed as a whole, is implemented by means of multiple servers
intercommunicating over a network. And if an author comes along and adds an
additional server that somehow extends the functionality of the existing community of
servers, we might be inclined to say that the new server is a derivative of the original
work, independent of the fact that it communicates with the original via a network.

4. CONCLUSION

In some ways, the apparent weaknesses in the GPL should come as no surprise, as
the GPL was born of an era in which the central artifact of software development and
distribution was the monolithic executable. In such a universe, software development
proceeded principally by modifying the existing source text of programs, compiling
source modules, linking the corresponding object files, and distributing the resulting
executable. This model of software development and distribution has become
increasingly fractured in an era characterized by highly dynamic, late binding, object-
and network-based systems. The GPL, consequently, strains to cover these newly
arising scenarios.

To effectuate the goals of the free software movement, the drafters of the GPL urge a
generally expansive definition of derivative work. The great irony is, of course, that
such an expansive definition would have second order consequences that are exactly
counter to the goals of the proponents of Free Software. A broad definition of
derivative would give code authors less freedom to create software that they can truly
call their own and do with as they please. And if naive analytic approaches such as
"subclassing equals derivation” reign, then proprietary vendors such as Microsoft could
arguably stake claim to every program ever written in C#, because they authored the
original class hierarchy. And since it seems unlikely that courts would employ different
standards depending on the goals or ideological motivations of licensors, proponents
of free software might want to be careful what they wish for: what's good for the GNU
might not be good for the gander.

5. REFERENCES

o Aho, Alfred V. & Ullman, Jeffrey D. (1992), The Foundations of Computer
Science, Computer Science Press.

o Abelson, Harold & Gerald Jay Sussman with Julie Sussman (1985), Structure
and Intrpetation of Computer Programs, The MIT Press.

o Patterson, David A. & John L. Hennessy (1998), Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann.

17

Hollaar, Lee A. (2002), Legal Protection of Digital Information. Available
at http://digital-law-online.info/lpdil.0/index.html.

Rosen, Lawrence (2005), Open Source Licensing: Software Freedom and
Intellectual Property Law, Prentice Hall.

St. Laurent, Andrew M. (2004), Understanding Open Source and Free Software
Licensing, O'Reilly.

The U.S. Copyright Act (17 U.S.C. 8100 et. seq.). Available
at http://www.copyright.gov/title17/.

GNU General Public License (GPL). Available
at http://www.linux.org/info/gnu.html.

GNU GPL FAQ. Available at http://www.gnu.org/licenses/gpl-fag.html.

Computer Associates International v. Altai, 982 F.2d 693, 23 U.S.P.Q.2d 1241
(2nd Cir. 1992).

Midway Mfg. Co. v. Artic International, Inc ., 704 F.2d 1009 (7th Cir. 1983).

Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., 964 F.2d 965 (9th Cir.
1992).

Micro Star v. Formgen Inc. , 154 F.3d 1107 (9th Cir. 1998).

18

http://digital-law-online.info/lpdi1.0/index.html
http://www.copyright.gov/title17/
http://www.linux.org/info/gnu.html
http://www.gnu.org/licenses/gpl-faq.html

