-Fr*equency_(Hz)

Introduction to - e swnthesis
Pure Data

gain

<—— processing

<—— output

Pure Data

* Pure Data (Pd) is a visual signal dataflow
programming language

* Designed to process sound and MIDI events.
Has grown to process video and inputs from a
variety of general purpose sensors

* Free alternative to MAX/MSP

* Runs on Linux, Macintosh, and Windows
computers

©2

Pure Data Console

File Find Windows Media Help

IN ouT
ln— ,El_ DIO I compute audio
G _i peak meters

cLIP cLIP

iemlibl (R-1.15) library loaded! ’X
iemlib2 (R-1.15) library loaded!
iem_mp3 (R-1.15) library loaded!
liem_t3_1ih (R-1.15) library loaded!

®3

Pure Data Test Signal

File Edit Put Fnd Windows Media Help |
Welcome to Pd ("Pure Data"). This window can test your
audio and MIDI connections. To see Pd's DOCUMENTATION
select "getting started" in the Help menu.
TEST
SIGNAL test signal channels:
-20 123 4567 8
0 QaLL []monitor
NONE
OFF
T — P —] D input-hipass
noise
e DD
AUDIO INPUT (RMS dB)
MIDI 0UT
-
(R
PD is COPYRIGHT 1997-2002 by Miller Puckette and others but
is free for you to use for any reasonable purpose. See the
file, LICENSE.txt in the distribution. L
/

o4

2.2 How does Pure Data work?

Data flows between objects connected through cords
or wires
Thin cords carry message data; fat cords carry audio
signals

Objects take in data at inlets, and may send output to
outlets; inlets and outlets appear as tabs at the edge
of objects
Types of object names:

— Object names with ~: Process signals

— Object names without ~: Process messages

®5

Like a Moog™ modular synth, but
digital

Patches

* A collection of objects wired together is a dataflow
graph program or patch. Name is derived from
analog electronic synthesizer modules connected
together with patch cords

* Patches are placed on a canvas
* Patches are navigated by the PD interpreter depth
first, from right to left (tries to go as deep as possible

in a graph, processing the right-most branch first
before a left branch)

Dataflow computation

How we humans look at dataflow How Pd looks at the graph
X

Right to left

l 10

Dislribuleg‘
Add one F

Depth first

Squared

I

[Times five Divide by four

1

Add both branches

g.

X

+ 5(x+1)

Pure Data Software Architecture

Pure Data consists of several programs:
— pd(main engine): the interpreter, scheduler and audio engine
— pd-gui: the interface you use to build Pure Data programs

— pd-watchdog: monitors the main engine and gui, and will attempt to
terminate unresponsive pd or pd-gui

Devices Input/Output Filesystem Interface
remote machine osc sound.wav display

MIDI keyboard UDP/TCP network intrinsic objects keyboard
fader box 1 mDi abstraction.pd mouse

Wii controller | usB ports patch-file.pd

joystick parallel ports external objects =

microphone/line serial ports textfile.txt
loudspeakers audio 'O source.c —‘1S

LEGO® for sound and video?

Pd basic elements (1)

* Object types by function/appearance: OSCw
— Object (processing)

— Message (events) bangi

— GUI (user interaction) OXm]C_ 1]

— Comment (documentation)
* Object types by topology:
— Source (outlet only)
— Sink (inlet only)
— Filter (inlet and outlet)
* Atoms
— Float, symbol or pointer

Square wave!

Pd basic elements (2)

Patch = network or graph of data flows

e Connections/Streams:
— Signals (continuous audio)
— Messages (sporadic events) OSCr
* Typ. control-oriented |
* Made up of multiple atoms #e 0.1
— Data streams flow from top to bottom :
* Audio I/O: [adc™], [dac™] dace~
* Abstraction

Editing and Interaction modes

Origins

* Miller S. Puckette
— PhD in math from Harvard in 1986
— Currently at CRCA (Center for Research in Computing and the Arts),
UCSD
* |IRCAM (FR) (19805) Institut de Recherche et Coordination Acoustique/Musique
— Was common for technicians to develop systems to support artists
— Puckette developed Max to enable artists to do it themselves
* Pure Data (Puckette, 1996)
— Design based on Max
— Open source
— New: graphical data structures

Pd’s philosophy and architecture

Graphical literate programming:

— Visual appearance of the patch is the program

— DSP block diagrams are pseudocode

— Comment objects can be placed anywhere on a patch
Object-oriented/functional paradigm:

— Classes and instantiation

— Message passing

— Outlets pass data to inlets

Patch = document = program/subprogram

Object network must be acyclic

— But feedback (recirculation of data) is possible using
special delay objects

Data processed in real time

Other design features

Patches can be edited while running

Abstraction and re-use of patches

— Ad hoc, one-off sub-patches

— External patches (re-usable)

— All look like objects from the outside
Data structures: arrays, lists, graphics
Entire libraries of “externals”

Help file conventions make objects self-
documenting

Implementation details

All numbers are 32-bit floating-point
— Audio h/w usually 16-24 bit integer precision

Primitive objects typ. implemented in C

Many audio APIs supported:
— PortAudio, ASIO, MMIO, Core Audio, ALSA, 0SS, JACK

Audio rate processing runs continuously, in blocks

— Usually driven by audio hardware clock
Patches stored as plain text, describing topology and layout
GUI is implemented using Tcl/Tk

Input/Output

* [print], [snapshot~]
* Load/save audio files to/from Pd arrays
* MIDI, OSC
* USB HID-class devices: [hid]
— Keyboard, mouse, joystick, etc.
* Bluetooth (e.g. Wii™ remote control)
* Network (TCP or UDP)
— Messages and uncompressed audio
— Compressed audio, e.g. [oggcast™]

* Local IPC: pdsend/pdreceive
* COMEDI (Linux)
* Video capture

Subtleties

Using messages for control of audio-rate data
— Quantisation, low data rate (10-1000 Hz)

— “Zipper noise”, clicks on toggling, noise

— Add interpolation ([line], [line™], [vline~])

Foldover distortion (sampling; Nyquist limit)

Clipping on audio I/O
NaN

Platform-dependent features:
— Graphics, codecs, tablets, etc.

Thinking in data flows

* Where are the loops? Conditionals?
Variables? Assignment operations? Flow of
control? '

No visible flow of control

Messages happen virtually simultaneously

Audio signals processed continuously...

— But in finite blocks
* Power-of-2 samples in duration
* Some latency (1.45 ms typ. @ 44.1 kHz)
* Interleaved with message processing

Implicit event loop, effectively
However, it’s not stateless...

10

Some procedural counterparts

Variables (typed)

— [integer], [float] and [symbol]

— Store received input values, emit when “banged”
[until] for iteration

Expressions

— Network of objects (inverted expression tree)

— [expr] (formula in a box)

[spigot] conditionally enables data flow

[moses], [select] and [route] resemble CASE or IF as functions
Numeric messages can be interpreted as Booleans
Objects for logical and relational operators

— [&&], [I], [==], [<], [<=], et al.

Certain tasks are easier in a data-flow
environment

Real-time, interactive tasks

Function-oriented tasks

Dealing with continuous signals (streams)

— e.g. capture and playback, analysis and synthesis

Event-driven stuff
— External triggers, physical devices
— Timed events (e.g. [metro] (metronome))

11

Going beyond sound

3D: GEM (OpenGL)

Video capture, processing, compositing, etc.
— PDP, PiDiP

Physical modelling

Physical transducers and other 1/O

Light sensors

* Ordinary cadmium sulfide devices
* More light, less resistance

* Some analog pre-processing required before
DAC

12

Drum pads

* Rubber practice pads

* Piezoelectric transducer element

 Suitable for use with Pd’s [bonk™~] object
— Takes audio signal as input

— Detects “hits”
— Outputs messages (including intensity)

Wii™ remote controller

* Buttons
e 3-axis accelerometer

* IR camera for tracking
reference points

* Vibration

e Speaker r

* LEDs

13

Potential Pd applications

General signal processing
— suitable for real-time, audio frequency work

Data visualisation

Simulation

— (damped mass on spring demo)
Prototyping

— (simple flight sim in one patch)

DIY groupware systems

VJ (video jockey) performance
Sound design

Game development

Potential improvements

Define aliases for object classes

Attach comments to specific objects, groups
or regions

An on-demand signal snooper for testing and
troubleshooting

Macro capability?
Hierarchical namespace for objects?
Ul refinements

14

Conclusions

Modularity and generality are great strengths
— Need abstractions to manage complexity

— Libraries are important

— Be willing to DIY

Literate graphical programming has benefits
“Everything is a function” works well for audio
Ability to edit running patches is useful
Invisible connections ([send]/[receive], etc.)?
— Undermine graphical approach

— but avoid clutter on complex graphs

15

