
Shading and 
Rendering



The Graphics Pipeline

A sequence of steps used 
to create a 2d raster* 
representation of a 3d 
scene.
A raster graphic (bitmap image) is a dot matrix data structure 
representation a rectangular grid of pixels (points of color) that are 
viewable via a monitor





The GPU



1. Triangulates 
2. Interpolates
3. Multithreaded



Rasterization



Rasterization
• Refers to the popular rendering algorithm use for displaying 3D models on a 

computer

• Rasterizers take a stream of vertices (from 3D models), transform them into 
corresponding 2-dimensional points on the viewer's monitor and fill in the 
transformed 2-dimensional triangles as appropriate 

• Rasterization is currently the most popular technique for producing real-
time 3D computer graphics

• Rasterization is extremely fast.



The standard graphics model

Rasterize – creating an image by filling in tris with pixels for a digital screen

Framebuffer – portion of RAM which holds a completed frame of data (a bitmap) used to refresh 

the screen (allows for all these stages of processing to be invisible to the viewer)



The standard graphics model

Rasterize – creating an image by filling in tris with pixels for a digital screen

Framebuffer – portion of RAM which holds a completed frame of data (a bitmap) used to refresh 

the screen (allows for all these stages of processing to be invisible to the viewer)



Don’t forget multithreading 
• The GPU is performing all of this multiple time at the same time, in parallel 

• The GPU is very fast at rasterization

• The GPU is built specifically for rasterization – turning data to images built 
from pixels



Shading



Vertex Shader and 
Pixel Shader

Part of the Rasterization Pipeline



Shader
• A shader is simply a program that describes how something looks

• It describes the rendering steps for the GPU to create an accurate 
representation of the object it describes

• Pixel and Vertex Shaders work together to make most of the environments 
and characters we love in our games look the way they do



Vertex Shader
• All assets rendered on screen have a Vertex Shader associated with them to 

handle processing of individual vertices at render time

• The Vertex Shader processes vertex related data such as the position of the 
vertice, it’s normal direction and texture coordinate

• Vertex Shaders are able to make changes to a model’s existing vertices

• Skinning and animation data is also computed by the Vertex Shader



Pixel Shader
• Fragments = Pixels

• The Pixel Shader is a program that computes the color of a pixel based on 
information supplied by the Vertex Shader, textures, and other user added 
input

• Pixel Shaders create the details of your assets

• Handles calculations of lighting, shadowing, specularity, reflectivity as well 
as many other surface effects





Overview



A note on spaces
In a 3D game engine, we usually deal with several different 
coordinates spaces. Among the most commonly used spaces 
are Object space, World space, Inertial space, and Camera space.



Local Space
Your object relative to its local 
origin. The is the “space” you 
model your asset in 

World Space
Your object is now 
relative to a global 
origin of the world. 

Camera Space
Transforming your world-space 
coordinates to the space as seen from 
the camera's point of view

Clip Space
Determines which vertices to render to screen 
based on their position – inside out outside 
the camera frustum

Screen Space
Lastly we 
transform the 
clip coordinates 
to screen 
coordinates. 





Other rendering 
techniques?



Ray tracing 
• Ray tracing is a technique for generating an image by tracing the path of 

light through pixels in an image plane and simulating the effects of its 
encounters with virtual objects

• Each ray is tested for intersections with the objects in the scene

• Once an object is hit a ray is cast to each of the light sources in the scene to 
calculate illumination and surface shading for the intersection point (this 
determines the pixel color)

• If the material has specular reflectivity, a ray is traced in the reflection 
direction to test for reflected objects and return their illuminated color to the 
first surface

• If the surface is transparent the ray is sent out further into the scene, 
possibly at an angle to simulate refraction



Ray tracing



Comparing rasterization and ray 
tracing
• Rasterization rendering time is linear to the number of triangles that are 

drawn 

• High end graphics cards can display about 1 million polygons in real time, 
though in games we are doing a lot more then just drawing polygons. 
Modern graphic cards are designed for rasterization techniques

• The vast majority of computer graphics today are drawn using this 
technique

• Rasterization can only look at a single triangle at a time. However, most 
effects require access to multiple triangles: e.g. casting a shadow from one 
triangle to the other, computing the reflection of one triangle off of another, 
or simulating the indirect illumination due to light bouncing between all 
triangles in the scene

• Rasterization must do various tricks to approximate these effects, e.g. using 
reflections maps instead of real reflection



Comparing rasterization and ray 
tracing
• Due to its mathematical correctness, ray tracing makes for more realistic 

graphics, e.g. indirect lighting, shadowing, refractions, reflections, and 
volume rendering then rasterization

• However a ray tracer still has to cheat to get soft shadows, caustics, and 
true global illumination

• This is difficult to do this in real time



Path tracing
• Similar to ray tracing but sends out tens, hundreds or even thousands of 

rays for each pixel to be rendered (instead of just one).

• When the ray hits a surface it bounces off and keeps bouncing until it hits a 
light source of exhausts a bounce limit.

• Then it calculates the amount of light transferred all the way to the pixel, 
including any color information gathered from surfaces it hit along the way

• Averaging all the values calculated from all the paths that were traced into 
the scene determines the final color of the pixel 

• Requires a ton of computing power

• Closest solution to physically correct rendering, but still doesn’t work for 
everything. 

• For example fails to accurately represent partially translucent surfaces 
(such as skin, wax, milk, etc.)





Voxel Cone Tracing 
• A form of ray tracing that replaces rays, which have no thickness, with thick 

rays, cones

• An algorithm that can be used to compute indirect lighting with fast 
estimations of the visibility and incoming energy

• Currently performance is scene-independent (25-70FPS) and can handle 
dynamic content 

• Voxel cone tracing can be used to efficiently estimate Ambient Occlusion

https://youtu.be/dD9CPqSKjTU



Forward and 
Deferred Rendering
Both rasterization techniques



Forward Rendering
• Takes the geometry, breaks it down into vertices, and then converts those to 

pixels that get the final rendering treatment and is then passed onto the 
screen

• Rasterizes each geometric object in the scene

• Every geometric object has to consider every light in the scene

• Meaning the Pixel Shader per geometric object is completely recalculated for 
each light in the scene

• The resulting output of these calculations are blended together

• Overlapping lights become extremely expensive

• Too many lights cause frame rate issues



Forward Rendering



Forward Rendering
• Careful culling of lights improves performance

• Light limitation improve performance

• Many times per-pixel lighting only takes place with the closest two or three 
lights and per-vertex lighting on next three or four closes lights



Deferred Rendering
• Rasterizes all of the scene objects without lighting

• Stores important information into 2D “image buffers”

• This important info includes screen space depth, surface normals, diffuse 
color, specular color and specular power

• The combination of these images is referred to as the G-Buffer





Deferred Rendering
• The lighting pass is performed by rendering each light source as a geometric 

object in the scene

• Each pixel that is touched by the light’s geometric representation is shaded 
using the desired lighting equation

• Expensive lighting calculations are only computed once per light per covered 
pixel which allows for many more lights per scene 







Deferred Rendering



The Disadvantage of Deferred
• The G-Buffer can only store data of opaque objects (only one value per 

position on screen is saved), meaning information about transparent and 
translucent objects can not be lit appropriately

• Transparent geometry must be rendered using the standard forward 
rendering technique

• Making lighting of transparencies extremely expensive!

• Many Anti aliasing solutions don’t work (more on this later)



Deferred Forward

Performance

Cost of a per-pixel Light Number of pixels it 

illuminates

Number of pixels * 

Number of objects 

it illuminates

Number of times objects are normally 

rendered

1 Number of per-

pixel lights

Overhead for simple scenes High None

Platform Support

PC (Windows/Mac) Shader Model 3.0+ 

& MRT

All

Mobile (iOS/Android) OpenGL ES 3.0 & 

MRT

All

Consoles XB1, PS4 All



Other Rendering 
Terms



Anti Aliasing 
Technique used to smooth jagged edges on curved lines and diagonals





SSAA or FSAA
• Super sampling anti-aliasing was the first type of anti-aliasing available

• Color samples are taken at several instances inside the pixel and an average 
color value is calculated

• To achieve this the image is rendered at a much higher resolution than the 
final one displayed

• The image is shrunk to the desired size, the extra pixels are used for the 
final color calculation

• The down sampled image has smoother transition

• The number of samples used to calculate the single final pixel color 
determines the quality of the output

• Uses lots of processing power



MSAA
• Multi-sample anti-aliasing is one of the more common types of anti-aliasing 

available in modern games

• Still a super sampling technique

• But only smooths out the edges of polygons, doesn't solve pixelated textures

• Uses less processing power then SSAA but still quite a lot 

• Most common way to run a forward-rendered game

• MSAA does not work for a deferred renderer because lighting decisions are 
made after the MSAA calculations, resulting in lighting and shading that 
stills appear jagged



FXAA
• Fast approximate anti-aliasing

• Smooths out edges in all parts of the image

• Makes the image look blurry, which means it isn't ideal if you want crisp 
graphics

• Ignores polygons and line edges, and simply analyzes the pixels on the 
screen

• Where it sees pixels that create an artificial edge, it smooths them

• Smooths edges in all pixels on the screen, including those inside alpha-
blended textures and those resulting from pixel shader effects, which other 
techniques ignore

• Very small performance cost 



FXAA





Ambient Occlusion
Method to approximate how bright light should be shining on any 
specific part of a surface, based on the light and its environment



SSAO
• Screen space ambient occlusion

• The algorithm is implemented as a pixel shader that analyzes the screen 
depth buffer (stored as a texture in the G-buffer) 

• For every pixel on the screen, the pixel shader samples the depth values 
around the current pixel and computes the amount of occlusion based on the 
depth difference between the sampled pixels and current pixels

• For runtime sampling of these pixels is decided randomly per frame

• This creates a noisy image that is then blurred 





High-Dynamic-Range
Allows for the preservation of details that may be lost due to limiting 
contrast ratios



HDRR
• The motivation for High Dynamic Range Rendering allows bright things to 

be really bright, dark things to be really dark, and details that can be seen 
in both

• HDR in game engines means there is a larger value range for the rendering 
output (framebuffer)

• Typically this means 16 bit floating points that can go beyond the typically 
color range (vs 8 bit integers that only give 256 possible color values (per 
channel))

• The final output (what is displayed on the screen) uses a tone map to match 
colors (after light computation) in the HDR to the suitable counterpart in the 
LDR



Bidirectional 
Reflectance 
Distribution Function
A function of four real variables that defines how light is reflected at 
an opaque surface



BRDF
• A BRDF describes how much light is reflected when light makes contact 

with a certain material

• The appearance of light reflecting off a surface changes as your position 
viewing the surface changes

• It also changes when the position of the light changes

• BRDF is a function of incoming (light) direction and outgoing (view) 
direction relative to a local orientation at the light interaction point

• Also when light interacts with a surface, different wavelengths (colors) of 
light may be absorbed, reflected, and transmitted to varying degrees 
depending upon the physical properties of the material itself

• This means that a BRDF is also a function of wavelength



BRDF
• Light interacts differently with different regions of a surface

• Most real world materials are heterogeneous, diverse in the composition 
properties that the material is comprised of

• This property, known as positional variance is what allows light reflecting 
off of a surface to produces details in that surface

• Wood grain is a good example of this



BRDF
• So what is BRDF a function of?

 Incoming light direction

 View direction

 How much certain wavelengths are absorbs or reflected from a specific surface 

 The positional variance of the surface



BRDF
• So what is BRDF a function of?

 Incoming light direction

 View direction

 How much certain wavelengths are absorbs or reflected from a specific surface 

 The “metal-ness” 

 The positional variance of the surface

 The “roughness”



BRDF is the basis for PBR



Physically Based 
Rendering
Physically-based rendering (PBR) is a method of shading & 
rendering, used in order to provide a more accurate 
representation of the real (physics-based) world around us


