
Consoles

Goals?

• Ideal: 1080p @60fps

• Realistic: at least 900p and never drop below 30 fps

• 50GB of data possible on one Blu-ray

• >50GB require some content is downloaded- required internet
connection

Goals?

• Ideal: 2160p @60fps

• Realistic: at least 900p and never drop below 30 fps

• 4K Blu-rays can hold 100GB of data (these are not BC)

FPS

• Determined by the performance of the console – CPU + GPU
(however, GPU is typically the one that causes frame rate hiccups)

• How quickly can everything on the screen be rendered

• The more that has to be rendered the lower the frame rate

• The more calculations taking place per frame the lower the frame rate

• Lowering the resolution increases fps

Film vs games

• Film is usually 30 or less fps (24)

• Film frames are blurred into the next frame

• Films with >30 fps can loose motion blur

• Games do not have a blur between frames – 30 fps means 30 fully
rendered frames per second

• Frame rate drops are much more obvious in games than film

Hz vs FPS

• Hz – the refresh rate, how many times your screen draws per second

• Hz - purely a function of your monitor or television

• 60Hz is where the brain can’t see image flickering/judder – TV
standard. (120Hz is becoming more and more popular)

• FPS is how many times per second the game renders a frame

• If the FPS is less than your refresh rate the same frame may be
redrawn several times

• An FPS greater than your refresh rate will cause tearing

• Capping at 60 FPS prevents tearing

Keep in Mind

• Games are frequently expected to work on multiple consoles.

• Some Games are on console and PC.

Supporting multiple platforms?

• Scalability

• Content markup

• Switching LODs/adjusting LOD distance

• Changing texture sizes, mip map distance

• Change entire resolution

LODs

• Level of Detail (LOD) is the concept of decreasing the complexity of a
3D model as the camera moves farther away from that model.

LOD0LOD1LOD2LOD3

Mipmapping

• Technique where an original high resolution map is scaled and filter
into multiple resolutions all stored in the same texture map. The
texture changes based on the distance the asset is from the camera.

Virtual Reality

Goals?

• > 60 fps (90 fps – match refresh rate)

• Resolution matches the screen

• High screen percentage ~ > 100%

VR vs Console

• VR - Lower frame rate causes sickness – smoothness has a greater
importance, ultimate smoothness when Hz = FPS

• Resolution of VR appears worse because it is rendered closer to the
eye – screen door effect – when the lines between pixels are visible

• Tearing is more visible in VR

• For VR the screen is rendered twice

• PSVR will double frames at 60fps to increase smoothness when
displayed at 120hz

Color Calibration

• A game is made on multiple monitors

• Consumers can play the game on any number of different screens
(possibly at different refresh rates)

• Major VR headsets are restricted to specific monitors (they are the
screen)

Budgets and Optimization

Game Industry Anecdote
Optimization for Halo 4
http://www.gdcvault.com/play/1020641/Technical-Artist-Bootcamp-Halo-4

http://www.gdcvault.com/play/1020641/Technical-Artist-Bootcamp-Halo-4

Terms

• Budget – amount of resources made available for an asset
• Amount of memory allocated

• Amount of milliseconds to render allocated

• Amount of time needed to finish a task

• Amount of people needed to finish a task

• Amount of money needed to finish a task (time + people)

• Budget report – break down of the different pieces that make up a
full asset and how much memory, time to render, and occasionally
physical resources (time and people) are required for that asset

• Many studios have tools that output this data for an asset in a game –
“Budget Reporting Tools”

Terms

• Memory – how many bytes a piece of content is

• Performance – relates to how quickly and efficiently the game runs

Memory vs Performance

• Memory relates to how much physical space we have. All content
has a “size” or an amount of memory it takes up. Size.
• Hard data
• Numerical
• Pieces of the whole that add up to the total size of the game world

• Performance relates to how quickly we can use this content/this
memory. Speed.
• FPS
• How quickly we can make the image we want to make
• If the game judders or hiccups it means the performance was bad.
• Bad performance can be because the game is trying to load too much from

memory

GPU vs CPU

• GPU – performs the rendering of assets at each frame – the speed of which
reflects in the framerate. Hiccups, sudden changes in framerate, are usually
called “perf issues”.

• CPU – controls the game state data, AI calculations, physics, collision,
damage, inputs, statistics, audio, etc. Too many calculations for the CPU can
also cause sudden frame rate drops

• You can’t borrow memory between the two
• The CPU feeds the GPU
• CPU gives instructions about what the GPU needs to draw
• You don’t want threads on either to be waiting for to long
• You can improve perf by adjusting memory allocation. Similarly you can also

improve perf by decreasing the amount of content, decreasing the overall
required memory

Render Time per frame

• Each asset type typically is allowed a render time

• This is given in milliseconds

• E.g. an expensive character in a cinematics is allotted 3-4 ms for it to
render per frame.

• These are guidelines which should be set early in production per
game shot

• You want to leave some unplanned milliseconds as a buffer for more
expensive content or unexpected content so you can borrow from
these ms later on in the project – a millisecond contingency plan

What is a Millisecond?

• 1000 milliseconds = 1 second

• To reach 60 FPS you have 16.6 milliseconds to work with each frame

• Each asset takes a number of milliseconds to render per frame

• Smart teams set guidelines for how many milliseconds are allowed
per asset type to render per frame

• i.e. How many ms FX has in the shot

What changes the render time in art?

• Texture size

• Draw calls

• Vertex count

• Shader instruction count

• Lighting

How to determine an assets
allocated budget?

M
em

o
ry

The hard recordable data.
The numbers that define a piece of content

How much it impacts the
users visual image of the
world.
How big should it be.
How close to the player.
The type of asset, column
vs face.

Is its existence important
for gameplay and design?
Does it communicate an
important location, is it an
important character for
story telling?

Why are more verts more expensive?

• More verts = more triangles

• Move tris = More overshading

• When shading, a pixel will be
drawn if the triangles overlaps
the center position of the pixel

• Pixel processing is done per tris

Overdraw

• Overdraw is when the same pixel is rendered multiple times.
• Can be due to poor tessellation – lots of skinny long triangles or lots of small

triangles

• Happens when transparent materials overlap each other

DCC vert count != runtime vert
count

Real cost of my asset

• UV islands

• Smoothing groups (normals)

• Materials

• Vertex Color

• Skin weighting

• Game markup (metadata)

Best Practices for Asset Creation

• To minimize vertex count you should have your uv-map as continuous
as possible

• Have smooth normals or share hard normal edges with UV edges

• Share the same material across you mesh as much as possible

• Lower poly models with high rez textures are more performant

• Create edges that look smooth on low poly meshes by smoothing
your normals

• Try to avoid sharing a single vertex with too many tris

• Keep texel density consistent to reduce extra mipping calculations

Rendering

CPU
• To render objects on the screen, the CPU has a lot of processing work

to do: working out which lights affect that object, setting up the
shader and shader parameters, and sending drawing commands to
the graphics driver, which then prepares the commands to be sent off
to the graphics card.

• All this “per object” CPU usage is resource-intensive, so if you have
lots of visible objects, it can add up

• To optimize CPU performance, combine multiple objects that share
the same textures together

• CPU also processes vertex calculations such as skinning, cloth
simulation, and particles

GPU

• GPU is often limited by fillrate or memory bandwidth.

• fillrate refers to the number of pixels a video card can render to screen and
write to video memory or ram in a second

• If lowering your resolution increases your framerate most likely the fillrate
is your bottleneck

• The GPU could have too many vertices to process. The number of vertices
that is acceptable to ensure good performance depends on the GPU and
the complexity of vertex shaders

• Too much overdraw! Reduce transparency, reduce highly tessellated
meshes (especially those at a distance)

• Optimize your shaders, reduce calculations and texture reads to increase
GPU performance

Optimization Techniques
Optimizing does not mean removing content.

The goal of a technical artist is to optimize without sacrificing visual quality

Work Modularly

• Modularity
• Objects out of view are culled out

Frustum culling

• frustum culling is the process of removing objects that lie completely
outside the viewing frustum from the rendering process.

Strategically place object to cull

• Occlusion culling – uses the current view of the scene to determine
what is hidden behind other objects and then chooses not to render
those objects

• Occlusion Markup – decide that some objects are just not rendered at
all from a distance

• Backface culling – if an object is completely opaque, surfaces facing
away from the camera never need to be drawn

Use LODs and Mip-Maps

• LOD - LOD’s reduce the
numbers of instructions sent
to the renderer for objects
farther away.
• Less instruction = better

performance (less overdraw)
• Less instructions = lower

visual quality

• Mip-Maps - Mip-mapping
lowers the resolution of the
textures sent to the renderer
based on distance of the
asset

Reduce Draw calls

• Every shader require a separate draw call.

• Draw calls are calls to the graphics card to draw the mesh, reducing
them reduces overhead for the GPU

• Too many draw calls will hurt the performance

Reduce draw calls

• Merge textures so several object use the same texture map and
material/shader

• Use the same shader across many assets, especially when the assets
are far enough away
• Atmospheric fog can be an excuse for why everything past some distance

becomes the same color

• Reduce amount of transparences overlapping

Reduce Overlapping Transparences

• Reduce transparency usage as much as possible

• Render transparency at a lower screen percentage

• Put opaque object under transparent objects

• Sky Box - Only render parts of the sky box that are visible

• Water - Only Render transparency in water where it is shallow enough

Reduce culling distance

• The culling distance of draw
distance is the maximum
distance an object can be
from the camera in order to
be drawn by the renderer.

• Polygons beyond the draw
the distance are not drawn
to screen.

• This distance can be adjusted
to improve performance.

Use Proxy Geo

• Proxy geo is low-res geometry that
matches the form of the higher res
geometry.

• From a distance proxy geo can look
identical to the geometry it is trying
to represent. Only up close can users
tell the difference.

• The textures from the higher res
geometry is typically projected onto
the proxy geo.

• The proxy geo texture will also be
lower.

Use Occlusion Cards

• Geometry that fades out as the camera approaches it.

• Used to prevent geometry from rendering until the player is within a
specific distance of that geometry.

Compression

• Use Compressed Textures!!

• Results in faster load times and a smaller memory footprint

• Being able to read memory faster increases rendering performance,
limits the amount of texture data transferred when the GPU is
rendering

• You can improve perf by adjusting memory allocation. Similarly you
can also improve perf by decreasing the amount of required memory
of your content (and this can be done with compression)

Make Shaders Cheaper

• Avoid complex mathematical operations such as pow, exp, log, cos,
sin, tan.
• Use lookup tables instead

• Use the built in functions – they are typically optimized for the
engine.

• Round floating point values.

• Reduce texture calls.

• Reduce instructions.

Animation Optimization

• Make sure things that can’t be seen (are occluded) aren’t animating.

• Remove skin weights for objects that are far away.

• Only calculate motion for major joints.
• Ex – at a distance the head still turns and rotates, but the facial joints no

longer animate.

• Combine skinned meshes whenever possible.

• Avoid scale animations, they are more expensive than translation and
rotation.

• Don’t import the rig with your skeleton.

Performance Checklist
 Reduce vertex count visible per frame

 Tune Occlusion
 Culling distance
 Impostors
 Line of sight
Occlusion cards
Modular geo used

 LOD distance objects
 Proxy Geo

 Reduce object count
 Reduce large meshes to multiple smaller

meshes
 Remove small triangles
 Reduce transparency usage

 Reduce transparency overlapping

 Reduce number of different materials
per frame
 LOD meshes so they all share the same

material after some distance
 Don’t apply too many shaders to a single

mesh
Reuse materials as much as possible

 Bake lighting
 Limit dynamic lights

Decrease radius
 Reduce shadow casting

 Use compressed texture formats
 Use 16-bit textures over 32-bit
 Use Mip Maps so textures sizes reduce at

a distance
Share channels in textures for multiple

uses

 Reduce shader complexity
Minimize texture calls
Minimize complex mathematical

operations

Optimize Animation
LOD joints
Remove animation after a certain distance

Resources

• https://www.simplygon.com/knowledge-base/tutorials/why-optimize

• http://www.ericchadwick.com/examples/provost/byf2.html

• http://www.cgmascot.com/design/low-poly-tips-2/

• https://docs.unrealengine.com/latest/INT/Engine/Performance/Guid
elines/index.html

• https://docs.unity3d.com/Manual/ModelingOptimizedCharacters.ht
ml

https://www.simplygon.com/knowledge-base/tutorials/why-optimize
http://www.ericchadwick.com/examples/provost/byf2.html
http://www.cgmascot.com/design/low-poly-tips-2/
https://docs.unrealengine.com/latest/INT/Engine/Performance/Guidelines/index.html
https://docs.unity3d.com/Manual/ModelingOptimizedCharacters.html

Profiling Tools in UE4 and Unity

Performance and Profiling
In Unreal Engine 4
• Profile in game directly (editor objects such as the Content Browser

add rendering costs)

• Profile in ms not fps

• Disable Vsync - CONSOLE: r.Vsync

Performance and Profiling
In Unreal Engine 4

CONSOLE: stat unit

The actual Fame time is limited by either

Game: CPU game thread

Draw: CPU render thread

GPU

Which ever of those three is the highest is the limiting factor

Are you CPU bound?
• CONSOLE: stat SceneRendering

• Probably too many draw calls
• Reduce object count
• Reduce view distance
• Reduce material counts
• Use LOD models that contain smaller num of materials or elements
• Reduce objects that cast shadow

• CONSOLE: stat Game

• Too much game code, or poorly written game code
• Check for unnecessary loops in blueprints
• Check for bad raycast geometry
• Too much physics
• Too much AI

Are you GPU bound?

• CONSOLE: ProfileGPU

• Draw call heavy?

• Materials are too complex?

• Triangle meshes are too dense?

• View distance is too far?

GPU Bottleneck

• Is it pixel based? Check by changing r.ScreenPercentage

• Is it lighting based? Check by changing r.Shadow.MaxResolution

• Is it bound by vertex processing? Harder to check for…..

View Modes

• Lit, LightCompexity (darker is better), Wireframe, Shader Complexity
(green is good)

Performance and Profiling in
Unity

Performance and Profiling in Unity
• Use the Frame Debugger

Performance and Profiling in Unity
• Use the Profiler

The Profiler

• Gfx.WaitForPressed…. Means GPU bound, CPU is done waiting for
GPU

• If both GPU and CPU are waiting at any point it mean vsync is on and
the frames are rendering faster then the refresh rate

Additional Profiling Details

• Rendering Profiler – where to see the current triangles and vertices
count for the rendered frame

• Memory Profiler – shows statistics for common asset types such as
textures and meshes

Performance and Profiling in Unity
• Use the Rendering Stats

Performance and Profiling in Unity
• Use the GPU Overdraw - brighter colors indicate more overdraw

