
Pipelines

Pipeline?

 Macro level - The process required to get something from idea to an
asset on screen in a game

 Micro level - The process used to perform a specific action or step
necessary in creating a game. i.e. add animations to a specific
character, sculpt terrain for a map, apply shaders to assets

 Pipelines are made up of pipelines

 Designing a successful pipeline requires iteration and pre production

Industry example

Pipeline exercise

Tools

 Tools are segments of a pipeline or a pipeline themselves

 Tools decrease the number of steps in an existing pipeline

 Tools automate and/or simplify segments of a pipeline

 Tools decrease time required to create something – transverse a
pipeline

 Decreasing time required to create something increases amount of
content that can be created

 This is essential in games right now

• Improve Efficiency!

• Assist in a complicated workflow

• Automate a repetitive task

• Manage Metadata

• Incorporate external plugins seamlessly

Goals

What Do Artists Want From Tools?

They want to spend their time being creative, and not…

• Debugging problems

• Learning new complicated processes

• Performing repetitive tasks

• Waiting to see how their art looks in game

Tool Design Pillars

• Iteration

• Flexibility

• Automation

• Future-proof

Something Artists Want to Use

• Their involvement in development

• How it communicates through the user interface

• Doesn’t disrupt their existing workflow

Involving your customers in
development

https://www.youtube.com/watch?v=wNYvOufzjQA

Early Development

Work With An Artist!

• Early Feedback

• Learn from how they work

• Find bugs

• Artists will feel involved in development

• Build a relationship

Communication!!

• Close proximity

• Desk-side support

• Flexibility

• Observation and assistance

B U N G I E ' S H A I R S A L O N

B U N G I E ' S H A I R S A L O N

B U N G I E ' S H A I R S A L O N

B U N G I E ' S H A I R S A L O N

UX Design
The process of enhancing user satisfaction by improving the usability,

accessibility, and pleasure provided in the interaction between the user
and the product

Examples of Bad User
Experiences

In Windows 8, it

requires four

actions to shut

down your PC

Examples of Good User
Experience

Design Principles

Formatting

 Read from left to right

 Read from top to bottom

 The golden ratio is real!

https://blog.kissmetrics.com/eye-tracking-studies/

Emphasize

 Use color to draw attention

 Use Images to draw attention

 Use scale changes to draw attention

 Don’t clutter

Communicate

 Show meaning through color usage

 Embed documentation

 Include tooltips

 Carefully consider all wording

 Iterate on terminology

Cloth Simulation Tools as an
Example of Good VS Bad UIs

Bad UX

Havok cloth tool

 Create a Mesh

 Set attributes in Maya

 Launch the Havok Plugin Cloth Setup Tool (different for each Maya)

 Set up your cloth

 Export data for game

 Get data to work in the game

An improved version of the
Havok cloth tool

Creating a Positive User Experience

• Communicates with the user

• Influences the user’s progress

• Provides feedback

• A simple and clean User Interface

Cloth Tool Specifics

• Translates Havok data terminology to familiar terms

• Automates as much as possible

• Incorporates documentation into the tool

• Checks for problems throughout setup

Real World Terms
Parameters abstracted to

familiar terms

Internal Workings

© Bungie

The artist still

has full control

© Bungie

Embedded Documentation
Tool communicates with the

artist throughout setup

• User feels confident with decisions

• No worries about forgetting steps

• Mistakes are harder to make and less frequent

• Eliminates confusion

Embedded Documentation

Conclusion: Cloth Tool

• Setup is quick

• Setup issues are easy to find

• Clear workflow makes artists able to fix

simulation bugs early on

• Simulation parameters are easy to change

Iteration

Automation

• Choices such as fabric type immediately set

multiple values at once

• Settings automated based on data from the

scene

• New XML files for garments and cloth

Future Proof

• Pipeline can easily scale to 400+ garments

• New garments and fabrics are easy to add by a

technical artist

• Supports Havok specific components, but

fundamentals could still work for all simulation

tools

Flexibility

• Artist retains full control

• Advanced options are slightly hidden, less

clear than other tool features

• New garments require technical art support

Overall…
• Very successful at meeting design pillars

• Builds a positive user experience

• Takes a complicated workflow (cloth simulation) and breaks

it down into easy to understand steps

• Embedded documentation

• Technical artist can add new features without editing code

Build from existing workflows

Vertex Color

Problems

• Not artist friendly

• Fully numerical, no visual color representation

• Minimal control and flexibility

• Existing application tools were ignored

• Inconsistent workflows between applications

Vertex Color
Tool - 3D Studio Max

Vertex Color
Tool - Maya

Sharing Tools Across Applications

• Workflow familiarity

• Easy transition between applications

• Less tool support required

• Still able to customize based on application

Metadata
Data that serves to provide context or additional information about

other data

Metadata in Tools

 Save information about the content being worked on
 General info about the asset

 Progress on the asset

 Number of iterations

 Who has worked on the asset

 Tool revisions

 Scene hierarchy

 History

Why is this useful?

 Even if functionality exists for a task, rewriting that functionality as a
proprietary tool for your specific pipeline is beneficial due to
metadata

 Metadata can help developers quickly obtain relevant information
about the asset being worked on

 Allow quick queries and sorting of game assets

 Increased automation possibilities

 Allow for batching of changes or fixes for content

 Make bug fixing easier

Example

 Content management
 Tools for opening an assets in Maya

 Connect to source control

 Talk to other tools

 Set default settings based on the mesh type - environment, character, vehicle, etc.

 Know current development progress and track scheduling of the asset – base mesh,
production mesh, fixing a bug, etc.

 Tools for exporting assets to Game
 Connect to source control

 Check for issues with setup

 Give budget estimates

 Organize file structure

How?

 External databases

 Hidden UI elements

 Properties on the file

 Network nodes in Maya

 On the content itself

Storing information in unexpected places

 UV channels can store float2 values for each vertex

 Vertex color channels can store float3 values for each vertex

 3 mono maps can be stored in a single RGB map

 curve data can be saved on generic attributes

 custom tool settings can be saved as attributes on empty scene nodes
in Maya

Some specific examples

 Storing material blending amounts in a UV channel

 Storing health multipliers in vertex color

 Storing vertex offsets in vertex color

 Storing the current opened tabs of a tool as an attribute on an asset
in Maya

 Tracking how many times a specific mesh is placed in an engine for
analytics

