Motivation

Lots of (semi-)structured data at Google

- URLs:
 - Contents, crawl metadata, links, anchors, pagerank, ...
 - Per-user data:
 - User preference settings, recent queries/search results, ...
 - Geographic locations:
 - Physical entities (shops, restaurants, etc.), roads, satellite image data, user annotations, ...
- Scale is large
 - Billions of URLs, many versions/page (~20K/ version)
 - Hundreds of millions of users, thousands of q/sec
 - 100TB+ of satellite image data

Why not just use commercial DB?

- Scale is too large for most commercial databases
- Even if it weren't, cost would be very high
 - Building internally means system can be applied across many projects for low incremental cost
- Low-level storage optimizations help performance significantly
 - Much harder to do when running on top of a database layer

Also fun and challenging to build large-scale systems :)

Goals

- Want asynchronous processes to be continuously updating different pieces of data
 - Want access to most current data at any time
- Need to support:
 - Very high read/write rates (millions of ops per second)
 - Efficient scans over all or interesting subsets of data
 - Efficient joins of large one-to-one and one-to-many datasets
- Often want to examine data changes over time
 - E.g. Contents of a web page over multiple crawls
BigTable

- Distributed multi-level map
 - With an interesting data model
- Fault-tolerant, persistent
- Scalable
 - Thousands of servers
 - Terabytes of in-memory data
 - Petabyte of disk-based data
 - Millions of reads/writes per second, efficient scans
- Self-managing
 - Servers can be added/removed dynamically
 - Servers adjust to load imbalance

Status

- Design/initial implementation started beginning of 2004
- Production use or active development for many projects:
 - Google Print
 - My Search History
 - Orkut
 - Crawling/indexing pipeline
 - Google Maps/Google Earth
 - Blogger
 - ...

 - Largest bigtable cell manages ~200TB of data spread over several thousand machines (larger cells planned)

Background: Building Blocks

Building blocks:
- Google File System (GFS): Raw storage
- Scheduler: schedules jobs onto machines
- Lock service: distributed lock manager
 - Also can reliably hold tiny files (100s of bytes) w/ high availability
- MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
- GFS: stores persistent state
- Scheduler: schedules jobs involved in BigTable serving
- Lock service: master election, location bootstrapping
- MapReduce: often used to read/write BigTable data

Google File System (GFS)

- Master manages metadata
- Data transfers happen directly between clients/chunkservers
- Files broken into chunks (typically 64 MB)
- Chunks replicated across three machines for safety
- See SOSP’03 paper at http://labs.google.com/papers/gfs.html
MapReduce: Easy-to-use Cycles

Many Google problems: “Process lots of data to produce other data”
- Many kinds of inputs:
- Want to use easily hundreds or thousands of CPUs
- MapReduce: framework that provides (for certain classes of problems):
 - Automatic & efficient parallelization/distribution
 - Fault-tolerance, I/O scheduling, status/monitoring
 - User writes Map and Reduce functions
- Heavily used: ~3000 jobs, 1000s of machine days each day
See: “MapReduce: Simplified Data Processing on Large Clusters”. OSDI’04

BigTable can be input and/or output for MapReduce computations

Typical Cluster

Machine 1
- User Task
- BigTable Server
- Scheduler
- GFS
- Chunkserver
- Linux

Machine 2
- User Task
- BigTable Server
- Scheduler
- GFS
- Chunkserver
- Linux

Machine 3
- User Task
- BigTable Master
- Scheduler
- GFS
- Chunkserver
- Linux

BigTable Overview

- Data Model
- Implementation Structure
 - Tablets, compactions, locality groups, ...
- API
- Details
 - Shared logs, compression, replication, ...
- Current/Future Work

Basic Data Model

- Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

- Good match for most of our applications
Rows

- Name is an arbitrary string
- Access to data in a row is atomic
- Row creation is implicit upon storing data
- Rows ordered lexicographically
 - Rows close together lexicographically usually on one or a small number of machines

Tablets

- Large tables broken into tablets at row boundaries
- Tablet holds contiguous range of rows
 - Clients can often choose row keys to achieve locality
- Aim for ~100MB to 200MB of data per tablet
- Serving machine responsible for ~100 tablets
 - Fast recovery:
 - 100 machines each pick up 1 tablet from failed machine
 - Fine-grained load balancing:
 - Migrate tablets away from overloaded machine
 - Master makes load-balancing decisions
System Structure

- **Master Scheduling Master**: handles failover, monitoring
- **GFS**: holds tablet data, logs
- **Lock service**: holds metadata, handles master-election
- **Bigtable master**: performs metadata ops, load balancing
- **Bigtable tablet server**: serves data
- **Bigtable client library**

Locating Tablets

- **Locating Tablets (cont.)**
 - Our approach: 3-level hierarchical lookup scheme for tablets
 - Location is part of relevant server
 - 1st level: bootstrapped from lock server, points to owner of META0
 - 2nd level: Uses META0 data to find owner of appropriate META1 tablet
 - 3rd level: META1 table holds locations of tablets of all other tables
 - META1 table itself can be split into multiple tablets

Tablet Representation

- **SSTable on GFS**: Immutable on-disk ordered map from string→string
- **String keys**: <row, column, timestamp> triples
- **Write buffer in memory (random-access)**
- **Append-only log on GFS**
- **Tablet**
- **SSTable on GFS (mmap)**
- **Write**
Compactions

- Tablet state represented as set of immutable compacted SSTable files, plus tail of log (buffered in memory)

 - Minor compaction:
 - When in-memory state fills up, pick tablet with most data and write contents to SSTables stored in GFS
 - Separate file for each locality group for each tablet

 - Major compaction:
 - Periodically compact all SSTables for tablet into new base SSTable on GFS
 - Storage reclaimed from deletions at this point

Columns

- Columns have two-level name structure:
 - Family:optionalQualifier
 - Column family
 - Unit of access control
 - Has associated type information
 - Qualifier gives unbounded columns
 - Additional level of indexing, if desired

Timestamps

- Used to store different versions of data in a cell
 - New writes default to current time, but timestamps for writes can also be set explicitly by clients

 - Lookup options:
 - "Return most recent K values"
 - "Return all values in timestamp range (or all values)"

 - Column families can be marked w/ attributes:
 - "Only retain most recent K values in a cell"
 - "Keep values until they are older than K seconds"

Locality Groups

- Column families can be assigned to a locality group
 - Used to organize underlying storage representation for performance
 - Scans over one locality group are $O(\text{bytes}_\text{in}_\text{locality}_\text{group})$, not $O(\text{bytes}_\text{in}_\text{table})$

 - Data in a locality group can be explicitly memory-mapped
API

Metadata operations
- Create/delete tables, column families, change metadata

Writes (atomic)
- `Set()`: write cells in a row
- `DeleteCells()`: delete cells in a row
- `DeleteRow()`: delete all cells in a row

Reads
- `Scanner`: read arbitrary cells in a bigtable
 - Each row read is atomic
 - Can restrict returned rows to a particular range
 - Can ask for just data from 1 row, all rows, etc.
 - Can ask for all columns, just certain column families, or specific columns

Shared Logs

- Designed for 1M tablets, 1000s of tablet servers
 - 1M logs being simultaneously written performs badly
- Solution: shared logs
 - Write log file per tablet server instead of per tablet
 - Updates for many tablets co-mingled in same file
 - Start new log chunks every so often (64MB)
- Problem: during recovery, server needs to read log data to apply mutations for a tablet
 - Lots of wasted I/O if lots of machines need to read data for many tablets from same log chunk

Shared Log Recovery

- Recovery:
 - Servers inform master of log chunks they need to read
 - Master aggregates and orchestrates sorting of needed chunks
 - Assigns log chunks to be sorted to different tablet servers
 - Servers sort chunks by tablet, writes sorted data to local disk
 - Other tablet servers ask master which servers have sorted chunks they need
 - Tablet servers issue direct RPCs to peer tablet servers to read sorted data for its tablets

Compression

- Many opportunities for compression
 - Similar values in the same row/column at different timestamps
 - Similar values in different columns
 - Similar values across adjacent rows
- Within each SSTable for a locality group, encode compressed blocks
 - Keep blocks small for random access (~64KB compressed data)
 - Exploit fact that many values very similar
 - Needs to be low CPU cost for encoding/decoding
- Two building blocks: BMDiff, Zippy
BMDiff

- Bentley, McIlroy DCC'99: "Data Compression Using Long Common Strings"
- Input: dictionary * source
- Output: sequence of
 - COPY: <x> bytes from offset <y>
 - LITERAL: <literal text>
- Store hash at every 32-byte aligned boundary in
 - Dictionary
 - Source processed so far
- For every new source byte
 - Compute incremental hash of last 32 bytes
 - Lookup in hash table
 - On hit, expand match forwards & backwards and emit COPY
- Encode: ~100MB/s, Decode: ~1000MB/s

Zippy

- LZW-like: Store hash of last four bytes in 16K entry table
- For every input byte:
 - Compute hash of last four bytes
 - Lookup in table
 - Emit COPY or LITERAL
- Differences from BMDiff:
 - Much smaller compression window (local repetitions)
 - Hash table is not associative
 - Careful encoding of COPY/LITERAL tags and lengths
- Zippy but fast:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>% remaining</th>
<th>Encoding</th>
<th>Decoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gzip</td>
<td>13.4%</td>
<td>21MB/s</td>
<td>118MB/s</td>
</tr>
<tr>
<td>LZO</td>
<td>20.5%</td>
<td>135MB/s</td>
<td>418MB/s</td>
</tr>
<tr>
<td>Zippy</td>
<td>22.2%</td>
<td>172MB/s</td>
<td>409MB/s</td>
</tr>
</tbody>
</table>

BigTable Compression

- Keys:
 - Sorted strings of (Row, Column, Timestamp): prefix compression
- Values:
 - Group together values by "type" (e.g. column family name)
 - BMDiff across all values in one family
 - BMDiff output for values 1..N is dictionary for value N+1
- Zippy as final pass over whole block
 - Catches more localized repetitions
 - Also catches cross-column-family repetition, compresses keys

Compression Effectiveness

- Experiment: store contents for 2.1B page crawl in BigTable instance
 - Key: URL of pages, with host-name portion reversed
 - Groups pages from same site together
 - Good for compression (neighboring rows tend to have similar contents)
 - Good for clients: efficient to scan over all pages on a web site
- One compression strategy: gzip each page: ~28% bytes remaining
- BigTable: BMDiff + Zippy

<table>
<thead>
<tr>
<th>Type</th>
<th>Compressed</th>
<th>Count(B)</th>
<th>%remaining</th>
<th>Space(TB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web page contents 2.1</td>
<td>45.1</td>
<td>4.2</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td>1.8</td>
<td>11.2</td>
<td>1.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Anchors</td>
<td>126.3</td>
<td>22.8</td>
<td>2.9</td>
<td>12.7</td>
</tr>
</tbody>
</table>
In Development/Future Plans

- More expressive data manipulation/access
 - Allow sending small scripts to perform read/modify/write transactions so that they execute on server?
- Multi-row (i.e. distributed) transaction support
- General performance work for very large cells
- BigTable as a service?
 - Interesting issues of resource fairness, performance isolation, prioritization, etc. across different clients