Lecture 2 – MapReduce: Theory and Implementation

CSE 490H

This presentation incorporates content licensed under the Creative Commons Attribution 2.5 License.
Announcements

- Assignment 1 available super-soon (will post on mailing list)
- Start by reading version already on the web
 - “How to connect/configure” will change
 - The “meat” of the assignment is ready
Brief Poll Questions

- Has everyone received an email on the mailing list yet?
- What OS do you develop in?
- Do you plan on using the undergrad lab?
Two Major Sections

- Lisp/ML map/fold review
- MapReduce
Making Distributed Systems Easier

What do you think will be trickier in a distributed setting?
Making Distributed Systems Easier

- Lazy convergence / eventual consistency
- Idempotence
- Straightforward partial restart
- Process isolation
Functional Programming Improves Modularity
Functional Programming Review

- Functional operations do not modify data structures: They always create new ones
- Original data still exists in unmodified form
- Data flows are implicit in program design
- Order of operations does not matter
Functional Programming Review

fun foo(l: int list) =
 sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not matter – they do not modify l
“Updates” Don’t Modify Structures

fun append(x, lst) =
 let lst' = reverse lst in
 reverse (x :: lst')

The append() function above reverses a list, adds a new element to the front, and returns all of that, reversed, which appends an item.

But it never modifies lst!
Functions Can Be Used As Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its argument; DoDouble() will do it twice.

What is the type of this function?
Map

\[\text{map } f \text{ lst: } (\text{'a->'b}) \rightarrow (\text{'a list}) \rightarrow (\text{'b list}) \]

Creates a new list by applying \(f \) to each element of the input list; returns output in order.
Fold

fold f x₀ lst: ('a*'b->'b)->'b->('a list)->'b

Moves across a list, applying \(f \) to each element plus an *accumulator*. \(f \) returns the next accumulator value, which is combined with the next element of the list.
fold left vs. fold right

- Order of list elements can be significant
- Fold left moves left-to-right across the list
- Fold right moves from right-to-left

SML Implementation:

```sml
fun foldl f a []      = a
  | foldl f a (x::xs) = foldl f (f(x, a)) xs

fun foldr f a []      = a
  | foldr f a (x::xs) = f(x, (foldr f a xs))
```
Example

fun foo(l: int list) =
 sum(l) + mul(l) + length(l)

How can we implement this?
Example (Solved)

fun foo(l: int list) =
 sum(l) + mul(l) + length(l)

fun sum(lst) = foldl (fn (x,a)=>x+a) 0 lst
fun mul(lst) = foldl (fn (x,a)=>x*a) 1 lst
fun length(lst) = foldl (fn (x,a)=>1+a) 0 lst
A More Complicated Fold Problem

- Given a list of numbers, how can we generate a list of partial sums?

 e.g.: \([1, 4, 8, 3, 7, 9]\) \(\rightarrow\)
 \([0, 1, 5, 13, 16, 23, 32]\)
A More Complicated Map Problem

Given a list of words, can we: reverse the letters in each word, and reverse the whole list, so it all comes out backwards?

[“my”, “happy”, “cat”] -> [“tac”, “yppah”, “ym”]
map Implementation

fun map f [] = []
| map f (x::xs) = (f x) :: (map f xs)

- This implementation moves left-to-right across the list, mapping elements one at a time

- ... But does it need to?
Implicit Parallelism In map

- In a purely functional setting, elements of a list being computed by map cannot see the effects of the computations on other elements.
- If order of application of f to elements in list is *commutative*, we can reorder or parallelize execution.
- This is the “secret” that MapReduce exploits.
MapReduce
Motivation: Large Scale Data Processing

- Want to process lots of data (> 1 TB)
- Want to parallelize across hundreds/thousands of CPUs
- … Want to make this easy
MapReduce

- Automatic parallelization & distribution
- Fault-tolerant
- Provides status and monitoring tools
- Clean abstraction for programmers
Programming Model

- Borrows from functional programming
- Users implement interface of two functions:

 - `map` \((\text{in_key}, \text{in_value}) \rightarrow (\text{out_key}, \text{intermediate_value_list}) \text{ list}\)

 - `reduce` \((\text{out_key}, \text{intermediate_value_list}) \rightarrow \text{out_value_list}\)
map

- Records from the data source (lines out of files, rows of a database, etc) are fed into the map function as key*value pairs: e.g., (filename, line).
- map() produces one or more intermediate values along with an output key from the input.
map

map (in_key, in_value) ->
(out_key, intermediate_value) list
reduce

- After the map phase is over, all the intermediate values for a given output key are combined together into a list.
- `reduce()` combines those intermediate values into one or more *final values* for that same output key.
- (in practice, usually only one final value per key)
Reduce

\[\text{reduce (out_key, intermediate_value list) } \rightarrow \text{ out_value list} \]
Input key-value pairs

Data store 1

map

... (key 1, values...)

... (key 2, values...)

... (key 3, values...)

== Barrier ==: Aggregates intermediate values by output key

key 1, intermediate values

reduce

final key 1 values

key 2, intermediate values

reduce

final key 2 values

key 3, intermediate values

reduce

final key 3 values

Input key-value pairs

Data store n

map

... (key 1, values...)

... (key 2, values...)

... (key 3, values...)
Parallelism

- map() functions run in parallel, creating different intermediate values from different input data sets
- reduce() functions also run in parallel, each working on a different output key
- All values are processed independently
- Bottleneck: reduce phase can’t start until map phase is completely finished.
Example: Count word occurrences

map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int> intermediate_values):
 // output_key: a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += v;
 Emit(result);
Example vs. Actual Source Code

- Example is written in pseudo-code
- Actual implementation is in C++, using a MapReduce library
- Bindings for Python and Java exist via interfaces
- True code is somewhat more involved (defines how the input key/values are divided up and accessed, etc.)
Locality

- Master program divvies up tasks based on location of data: tries to have map() tasks on same machine as physical file data, or at least same rack
- map() task inputs are divided into 64 MB blocks: same size as Google File System chunks
Fault Tolerance

- Master detects worker failures
 - Re-executes completed & in-progress map() tasks
 - Re-executes in-progress reduce() tasks
- Master notices particular input key/values cause crashes in map(), and skips those values on re-execution.
 - Effect: Can work around bugs in third-party libraries!
Optimizations

- No reduce can start until map is complete:
 - A single slow disk controller can rate-limit the whole process
- Master redundantly executes “slow-moving” map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up the total computation?
Combining Phase

- Run on mapper nodes after map phase
- “Mini-reduce,” only on local map output
- Used to save bandwidth before sending data to full reducer
- Reducer can be combiner if commutative & associative
Combiner, graphically

On one mapper machine:

Map output

Combiner replaces with:

To reducer

To reducer
Word Count Example redux

map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_value:
 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int> intermediate_values):
 // output_key: a word
 // output_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += v;
 Emit(result);
Distributed “Tail Recursion”

- MapReduce doesn’t make infinite scalability automatic.
- Is word count infinitely scalable? Why (not)?
What About This?

UniqueValuesReducer(K key, iter<V> values) {
 Set<V> seen = new HashSet<V>();
 for (V val : values) {
 if (!seen.contains(val)) {
 seen.put(val);
 emit (key, val);
 }
 }
}
A Scalable Implementation?
A Scalable Implementation

KeyifyMapper(K key, V val) {
 emit ((key, val), 1);
}

IgnoreValuesCombiner(K key, iter<V> values) {
 emit (key, 1);
}

UnkeyifyReducer(K key, iter<V> values) {
 let (k', v') = key;
 emit (k', v');
}
MapReduce Conclusions

- MapReduce has proven to be a useful abstraction
- Greatly simplifies large-scale computations at Google
- Functional programming paradigm can be applied to large-scale applications
- Fun to use: focus on problem, let library deal w/ messy details