MapReduce

Algorithms

CSE 490H

" A
Algorithms for MapReduce

m Sorting

m Searching

m [F-IDF

m BFS

m PageRank

m More advanced algorithms

MapReduce Jobs

m Tend to be very short, code-wise
ldentityReducer is very common

m “Utility” jobs can be composed

m Represent a data flow, more so than a
procedure

" A
Sort: Inputs

m A set of files, one value per line.
m Mapper key is file name, line number
m Mapper value is the contents of the line

Sort Algorithm

m [akes advantage of reducer properties:
(key, value) pairs are processed in order
by key, reducers are themselves ordered

m Mapper: |dentity function for value
(K, v) 2 (v, _)
m Reducer: Identity function (k’,) -> (k’,)

" A
Sort: The Trick

m (key, value) pairs from mappers are sent to a
particular reducer based on hash(key)

m Must pick the hash function for your data such
that k; < k, => hash(k,) < hash(k,)

M1 M2 M3

R1 R2

" A
Final Thoughts on Sort
m Used as a test of Hadoop’s raw speed

m Essentially “lO drag race”
m Highlights utility of GFS

"
Search: Inputs

m A set of files containing lines of text
m A search pattern to find

m Mapper key is file name, line number
m Mapper value is the contents of the line
m Search pattern sent as special parameter

Search Algorithm

m Mapper:

Given (filename, some text) and “pattern”, if
“text” matches “pattern” output (filename,)

m Reducer:
ldentity function

Search: An Optimization

m Once a file is found to be interesting, we
only need to mark it that way once

m Use Combiner function to fold redundant
(flename,) pairs into a single one

Reduces network I/O

" JJ
TF-IDF

m [erm Frequency — Inverse Document
Frequency

Relevant to text processing
Common web analysis algorithm

The Algorithm, Formally

tf ik
1 T ZA! Th

Dl
{d: t; € d}}]

thdf = tf - idf

idf; = log

| D | : total number of documents in the corpus
« [{d:t: € d}|: number of documents where the term ¢, appears (that is 7 #0).

" A
Information We Need

m Number of times term X appears in a
given document

m Number of terms in each document
m Number of documents X appears in
m [otal number of documents

" A
Job 1: Word Frequency in Doc

m Mapper
Input: (docname, contents)
Output: ((word, docname), 1)

m Reducer
Sums counts for word in document
Outputs ((word, docname), n)

m Combiner is same as Reducer

" A
Job 2: Word Counts For Docs

m Mapper
Input: ((word, docname), n)
Output: (docname, (word, n))
m Reducer
Sums frequency of individual n’s in same doc
Feeds original data through
Outputs ((word, docname), (n, N))

" S
Job 3: Word Frequency In Corpus

m Mapper
Input: ((word, docname), (n, N))
Output: (word, (dochame, n, N, 1))

m Reducer
Sums counts for word in corpus
Outputs ((word, docname), (n, N, m))

" A
Job 4: Calculate TF-IDF

m Mapper
Input: ((word, docname), (n, N, m))
Assume D is known (or, easy MR to find it)
Output ((word, docname), TF*IDF)

m Reducer
Just the identity function

Working At Scale

m Buffering (doc, n, N) counts while
summing 1°s into m may not fit in memory

How many documents does the word “the”
occur in?

m Possible solutions
lgnore very-high-frequency words
Write out intermediate data to a file
Use another MR pass

" A
Final Thoughts on TF-IDF

m Several small jobs add up to full algorithm

m Lots of code reuse possible
Stock classes exist for aggregation, identity

m Jobs 3 and 4 can really be done at once In
same reducer, saving a write/read cycle

m Very easy to handle medium-large scale,
but must take care to ensure flat memory
usage for largest scale

BFS: Motivating Concepts

m Performing computation on a graph data
structure requires processing at each node

m Each node contains node-specific data as
well as links (edges) to other nodes

m Computation must traverse the graph and
perform the computation step

m How do we traverse a graph in
MapReduce? How do we represent the
graph for this?

" A
Breadth-First Search

- Breadth-First
Search is an
iterated algorithm
over graphs

- Frontier advances
from origin by one
level with each pass

Breadth-First Search & MapReduce

m Problem: This doesn't “fit” into MapReduce

m Solution: lterated passes through
MapReduce — map some nodes, result
includes additional nodes which are fed into
successive MapReduce passes

Breadth-First Search & MapReduce

m Problem: Sending the entire graph to a map
task (or hundreds/thousands of map tasks)
iInvolves an enormous amount of memory

m Solution: Carefully consider how we
represent graphs

" A
Graph Representations

- The most straightforward representation of
graphs uses references from each node to
its neighbors

e

" A
Direct References

m Structure is inherent class GraphNode
to object L

m |teration requires e s
linked list “threaded Tt cdaens
throughu graph out_eaqages,

_ GraphNode
m Requires common iter next:
view of shared R
memory
(synchronization!)

m Not easily serializable

Adjacency Matrices

m Another classic graph representation.
M[i][j]]= 1" implies a link from node i to |.

m Naturally encapsulates iteration over nodes
1 2 3 4

0 1 0 1
| 0 | |
0 1 0 0
| 0 | 0

B W IN | -

" A
Adjacency Matrices: Sparse
Representation

m Adjacency matrix for most large graphs
(e.g., the web) will be overwhelmingly full of
Z€eros.

m Each row of the graph is absurdly long

m Sparse matrices only include non-zero
elements

Sparse Matrix Representation

1: , (18, 1), (200, 1)
2:(6,1), (12, 1), (80, 1), (400, 1)
3: 14, 1)

Sparse Matrix Representation

3, 18, 200
16, 12, 80, 400
1,14

Q=

" A
Finding the Shortest Path

- A common graph
search application is
finding the shortest
path from a start node
to one or more target
nodes

- Gommonly done on a
single machine with
Dijkstra's Algorithm

. Can we use BFS to
find the shortest path
via MapReduce?

This is called the single-source shortest path problem. (a.k.a. SSSP)

"
Finding the Shortest Path: Intuition

m \We can define the solution to this problem
inductively:
DistanceTo(startNode) = 0

For all nodes n directly reachable from
startNode, DistanceTo(n) = 1
For all nodes n reachable from some other set

of nodes S,
DistanceTo(n) = 1 + min(DistanceTo(m), m € S)

From Intuition to Algorithm

m A map task receives a node n as a key, and
(D, points-to) as its value

D is the distance to the node from the start
points-to is a list of nodes reachable from n
Vp € points-to, emit (p, D+1)

m Reduce task gathers possible distances to
a given p and selects the minimum one

What This Gives Us

m This MapReduce task can advance the
known frontier by one hop

m [0 perform the whole BFS, a non-

MapReduce component t

nen feeds the

output of this step back into the

MapReduce task for anot

ner iteration

Problem: Where'd the points-to list go?

Solution: Mapper emits (n,

points-to) as well

Blow-up and Termination

m This algorithm starts from one node

m Subsequent iterations include many more
nodes of the graph as frontier advances

m Does this ever terminate?

Yes! Eventually, routes between nodes will
stop being discovered and no better distances
will be found. When distance is the same, we
stop

Mapper should emit (n, D) to ensure that
“current distance” is carried into the reducer

Adding weights

m Weighted-edge shortest path is more useful
than cost==1 approach

m Simple change: points-to list in map task
inc(ljudes a weight 'w' for each pointed-to
node

emit (p, D+w,) instead of (p, D+1) for each
node p

Works for positive-weighted graph

" A
Comparison to Dijkstra

m Dijkstra's algorithm is more efficient
because at any step it only pursues edges
][rom the minimum-cost path inside the

rontier

m MapReduce version explores all paths in
parallel; not as efficient overall, but the
architecture is more scalable

m Equivalent to Dijkstra for weight=1 case

" A
PageRank: Random Walks Over
The Web

m If a user starts at a random web page and
surfs by clicking links and randomly
entering new URLs, what is the probability
that s/nhe will arrive at a given page?

m [he PageRank of a page captures this
notion

More “popular” or “worthwhile” pages get a
higher rank

PageRank: Visually

[

www.cnn.com

=

\

www.nytimes.com

//

s

T
i

%

PageRank: Formula

Given page A, and pages T. through T _
linking to A, PageRank s defined as:

PR(A) = (1-d) + d (PR(T,)/C(T) + ... +
PR(T,)/C(T,))

C(P) is the cardinality (out-degree) of page P
d is the damping (“random URL”) factor

" J
PageRank: Intuition

m Calculation is iterative: PR. . is based on PR,

m Each page distributes its PR. to all pages it
links to. Linkees add up their awarded rank

fragments to find their PR._,

m d IS a tunable parameter (usually = 0.85)
encapsulating the “random jump factor”

PR(A) = (1-d) + d (PR(T,)/C(T,) + ... + PR(T)/C(T))

" A
PageRank: First Implementation

m Create two tables 'current’ and 'next' holding
the PageRank for each page. Seed 'current’
with initial PR values

m [terate over all pages in the graph,
distributing PR from 'current’ into 'next’ of
linkees

m current := next; next ;= fresh_table();
m Go back to iteration step or end if converged

Distribution of the Algorithm

m Key insights allowing parallelization:

The 'next' table depends on 'current’, but not on
any other rows of 'next’

Individual rows of the adjacency matrix can be
processed in parallel

Sparse matrix rows are relatively small

Distribution of the Algorithm

m Consequences of insights:

We can map each row of 'current’ to a list of
PageRank “fragments” to assign to linkees

These fragments can be reduced into a single
PageRank value for a page by summing

Graph representation can be even more
compact; since each element is simply 0 or 1,
only transmit column numbers where it's 1

Map step: break page rank into even fragments to distribute to link targets

g

N

/

NN

N

Reduce step: add together fragments into next PageRank

e

Iterate for next step...

" A
Phase 1: Parse HTML

m Map task takes (URL, page content) pairs
and maps them to (URL, (PR._., list-of-urls))

init?
PR, is the “seed” PageRank for URL

list-of-urls contains all pages pointed to by URL

m Reduce task is just the identity function

"
Phase 2: PageRank Distribution
m Map task takes (URL, (cur_rank, url_list))

For each uin url_list, emit (u, cur_rank/|url_list|)

Emit (URL, url_list) to carry the points-to list
along through iterations

PR(A) = (1-d) + d (PR(T,)/C(T,) + ... + PR(T)/C(T))

Phase 2: PageRank Distribution

m Reduce task gets (URL, url_list) and many
(URL, val) values

Sum vals and fix up with d
Emit (URL, (new_rank, url_list))

PR(A) = (1-d) + d (PR(T,)/C(T,) + ... + PR(T)/C(T))

" A
Finishing up...

m A subsequent component determines
whether convergence has been achieved
(Fixed number of iterations? Comparison of
key values?)

m If so, write out the PageRank lists - done!

m Otherwise, feed output of Phase 2 into
another Phase 2 iteration

" A
PageRank Conclusions

m MapReduce runs the “heavy lifting” in
iterated computation

m Key element in parallelization is
independent PageRank computations in a

given step

m Parallelization requires thinking about
minimum data partitions to transmit (e.g.,
compact representations of graph rows)

Even the implementation shown today doesn't

actually scale to the whole Internet; but it works
for intermediate-sized graphs

