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Algorithms for MapReduce

� Sorting

� Searching

� TF-IDF

� BFS

� PageRank

� More advanced algorithms



MapReduce Jobs

� Tend to be very short, code-wise

� IdentityReducer is very common

� “Utility” jobs can be composed

� Represent a data flow, more so than a 
procedure



Sort: Inputs

� A set of files, one value per line.

� Mapper key is file name, line number

� Mapper value is the contents of the line



Sort Algorithm

� Takes advantage of reducer properties: 
(key, value) pairs are processed in order 
by key; reducers are themselves ordered 

� Mapper: Identity function for value

(k, v) � (v, _)

� Reducer: Identity function (k’, _) -> (k’, “”)



Sort: The Trick

� (key, value) pairs from mappers are sent to a 

particular reducer based on hash(key)

� Must pick the hash function for your data such 

that k1 < k2 => hash(k1) < hash(k2)



Final Thoughts on Sort

� Used as a test of Hadoop’s raw speed

� Essentially “IO drag race”

� Highlights utility of GFS



Search: Inputs

� A set of files containing lines of text

� A search pattern to find

� Mapper key is file name, line number

� Mapper value is the contents of the line

� Search pattern sent as special parameter



Search Algorithm

� Mapper:

�Given (filename, some text) and “pattern”, if 

“text” matches “pattern” output (filename, _)

� Reducer:

� Identity function



Search: An Optimization

� Once a file is found to be interesting, we 
only need to mark it that way once

� Use Combiner function to fold redundant 
(filename, _) pairs into a single one

�Reduces network I/O



TF-IDF

� Term Frequency – Inverse Document 
Frequency

�Relevant to text processing

�Common web analysis algorithm



The Algorithm, Formally

•| D | : total number of documents in the corpus 

• : number of documents where the term ti appears (that is   ). 



Information We Need

� Number of times term X appears in a 
given document

� Number of terms in each document

� Number of documents X appears in

� Total number of documents 



Job 1: Word Frequency in Doc

� Mapper

� Input: (docname, contents)

�Output: ((word, docname), 1)

� Reducer

�Sums counts for word in document

�Outputs ((word, docname), n)

� Combiner is same as Reducer



Job 2: Word Counts For Docs

� Mapper
� Input: ((word, docname), n)

�Output: (docname, (word, n)) 

� Reducer
�Sums frequency of individual n’s in same doc

�Feeds original data through

�Outputs ((word, docname), (n, N))



Job 3: Word Frequency In Corpus

� Mapper

� Input: ((word, docname), (n, N))

�Output: (word, (docname, n, N, 1))

� Reducer

�Sums counts for word in corpus

�Outputs ((word, docname), (n, N, m))



Job 4: Calculate TF-IDF

� Mapper

� Input: ((word, docname), (n, N, m))

�Assume D is known (or, easy MR to find it)

�Output ((word, docname), TF*IDF)

� Reducer

�Just the identity function



Working At Scale

� Buffering (doc, n, N) counts while 
summing 1’s into m may not fit in memory

�How many documents does the word “the” 

occur in?

� Possible solutions

� Ignore very-high-frequency words

�Write out intermediate data to a file

�Use another MR pass



Final Thoughts on TF-IDF

� Several small jobs add up to full algorithm

� Lots of code reuse possible

�Stock classes exist for aggregation, identity

� Jobs 3 and 4 can really be done at once in 
same reducer, saving a write/read cycle

� Very easy to handle medium-large scale, 
but must take care to ensure flat memory 
usage for largest scale



BFS: Motivating Concepts

� Performing computation on a graph data 
structure requires processing at each node

� Each node contains node-specific data as 
well as links (edges) to other nodes

� Computation must traverse the graph and 
perform the computation step

� How do we traverse a graph in 
MapReduce? How do we represent the 
graph for this?



Breadth-First Search

• Breadth-First 
Search is an 
iterated algorithm 
over graphs

• Frontier advances 
from origin by one 
level with each pass

�
�

� �

�

�

�

�

�

�



Breadth-First Search & MapReduce

� Problem: This doesn't “fit” into MapReduce

� Solution: Iterated passes through 
MapReduce – map some nodes, result 
includes additional nodes which are fed into 
successive MapReduce passes



Breadth-First Search & MapReduce 

� Problem: Sending the entire graph to a map 
task (or hundreds/thousands of map tasks) 
involves an enormous amount of memory

� Solution: Carefully consider how we 
represent graphs



Graph Representations

• The most straightforward representation of 
graphs uses references from each node to 
its neighbors



Direct References

� Structure is inherent 
to object

� Iteration requires 
linked list “threaded 
through” graph

� Requires common 
view of shared 
memory 
(synchronization!)

� Not easily serializable

class GraphNode

{

Object data;

Vector<GraphNode>

out_edges;

GraphNode  

iter_next;

}



Adjacency Matrices

� Another classic graph representation. 
M[i][j]= '1' implies a link from node i to j.

� Naturally encapsulates iteration over nodes

01014

00103

11012

10101

4321



Adjacency Matrices: Sparse 
Representation

� Adjacency matrix for most large graphs 
(e.g., the web) will be overwhelmingly full of 
zeros. 

� Each row of the graph is absurdly long

� Sparse matrices only include non-zero 
elements



Sparse Matrix Representation

1: (3, 1), (18, 1), (200, 1)

2: (6, 1), (12, 1), (80, 1), (400, 1)

3: (1, 1), (14, 1)

…



Sparse Matrix Representation

1: 3, 18, 200

2: 6, 12, 80, 400

3: 1, 14

…



Finding the Shortest Path

• A common graph 
search application is 
finding the shortest 
path from a start node 
to one or more target 
nodes

• Commonly done on a 
single machine with 
Dijkstra's Algorithm

• Can we use BFS to 
find the shortest path 
via MapReduce?

This is called the single-source shortest path problem. (a.k.a. SSSP)



Finding the Shortest Path: Intuition

� We can define the solution to this problem 
inductively: 
�DistanceTo(startNode) = 0
�For all nodes n directly reachable from 

startNode, DistanceTo(n) = 1
�For all nodes n reachable from some other set 

of nodes S, 
DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)



From Intuition to Algorithm

� A map task receives a node n as a key, and 
(D, points-to) as its value
�D is the distance to the node from the start
�points-to is a list of nodes reachable from n
� ∀p ∈ points-to, emit (p, D+1)

� Reduce task gathers possible distances to 
a given p and selects the minimum one



What This Gives Us

� This MapReduce task can advance the 
known frontier by one hop

� To perform the whole BFS, a non-
MapReduce component then feeds the 
output of this step back into the 
MapReduce task for another iteration
�Problem: Where'd the points-to list go?
�Solution: Mapper emits (n, points-to) as well



Blow-up and Termination

� This algorithm starts from one node
� Subsequent iterations include many more 

nodes of the graph as frontier advances
� Does this ever terminate?

�Yes! Eventually, routes between nodes will 
stop being discovered and no better distances 
will be found. When distance is the same, we 
stop

�Mapper should emit (n, D) to ensure that 
“current distance” is carried into the reducer



Adding weights

� Weighted-edge shortest path is more useful 
than cost==1 approach

� Simple change: points-to list in map task 
includes a weight 'w' for each pointed-to 
node
�emit (p, D+wp) instead of (p, D+1) for each 

node p
�Works for positive-weighted graph



Comparison to Dijkstra

� Dijkstra's algorithm is more efficient 
because at any step it only pursues edges 
from the minimum-cost path inside the 
frontier

� MapReduce version explores all paths in 
parallel; not as efficient overall, but the 
architecture is more scalable

� Equivalent to Dijkstra for weight=1 case



PageRank: Random Walks Over 
The Web

� If a user starts at a random web page and 
surfs by clicking links and randomly 
entering new URLs, what is the probability 
that s/he will arrive at a given page?

� The PageRank of a page captures this 
notion
�More “popular” or “worthwhile” pages get a 

higher rank



PageRank: Visually
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PageRank: Formula

Given page A, and pages T
1

through T
n

linking to A, PageRank is defined as:

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... +

PR(T
n
)/C(T

n
))

C(P) is the cardinality (out-degree) of page P

d is the damping (“random URL”) factor 



PageRank: Intuition

� Calculation is iterative: PR
i+1

is based on PR
i

� Each page distributes its PR
i
to all pages it 

links to. Linkees add up their awarded rank 
fragments to find their PR

i+1

� d is a tunable parameter (usually = 0.85) 
encapsulating the “random jump factor”

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))



PageRank: First Implementation

� Create two tables 'current' and 'next' holding 
the PageRank for each page. Seed 'current' 
with initial PR values

� Iterate over all pages in the graph, 
distributing PR from 'current' into 'next' of 
linkees

� current := next; next := fresh_table();

� Go back to iteration step or end if converged



Distribution of the Algorithm

� Key insights allowing parallelization:
�The 'next' table depends on 'current', but not on 

any other rows of 'next'

�Individual rows of the adjacency matrix can be 
processed in parallel

�Sparse matrix rows are relatively small



Distribution of the Algorithm

� Consequences of insights:
�We can map each row of 'current' to a list of 

PageRank “fragments” to assign to linkees

�These fragments can be reduced into a single 
PageRank value for a page by summing

�Graph representation can be even more 
compact; since each element is simply 0 or 1, 
only transmit column numbers where it's 1
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Phase 1: Parse HTML

� Map task takes (URL, page content) pairs 
and maps them to (URL, (PR

init
, list-of-urls))

�PRinit is the “seed” PageRank for URL

� list-of-urls contains all pages pointed to by URL

� Reduce task is just the identity function



Phase 2: PageRank Distribution

� Map task takes (URL, (cur_rank, url_list))
�For each u in url_list, emit (u, cur_rank/|url_list|)

�Emit (URL, url_list) to carry the points-to list 
along through iterations

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))



Phase 2: PageRank Distribution

� Reduce task gets (URL, url_list) and many 
(URL, val) values
�Sum vals and fix up with d

�Emit (URL, (new_rank, url_list))

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))



Finishing up...

� A subsequent component determines 
whether convergence has been achieved 
(Fixed number of iterations? Comparison of 
key values?)

� If so, write out the PageRank lists - done!

� Otherwise, feed output of Phase 2 into 
another Phase 2 iteration



PageRank Conclusions

� MapReduce runs the “heavy lifting” in 
iterated computation

� Key element in parallelization is 
independent PageRank computations in a 
given step

� Parallelization requires thinking about 
minimum data partitions to transmit (e.g., 
compact representations of graph rows)
�Even the implementation shown today doesn't 

actually scale to the whole Internet; but it works 
for intermediate-sized graphs


