
MapReduce

Algorithms

CSE 490H

Algorithms for MapReduce

� Sorting

� Searching

� TF-IDF

� BFS

� PageRank

� More advanced algorithms

MapReduce Jobs

� Tend to be very short, code-wise

� IdentityReducer is very common

� “Utility” jobs can be composed

� Represent a data flow, more so than a
procedure

Sort: Inputs

� A set of files, one value per line.

� Mapper key is file name, line number

� Mapper value is the contents of the line

Sort Algorithm

� Takes advantage of reducer properties:
(key, value) pairs are processed in order
by key; reducers are themselves ordered

� Mapper: Identity function for value

(k, v) � (v, _)

� Reducer: Identity function (k’, _) -> (k’, “”)

Sort: The Trick

� (key, value) pairs from mappers are sent to a

particular reducer based on hash(key)

� Must pick the hash function for your data such

that k1 < k2 => hash(k1) < hash(k2)

Final Thoughts on Sort

� Used as a test of Hadoop’s raw speed

� Essentially “IO drag race”

� Highlights utility of GFS

Search: Inputs

� A set of files containing lines of text

� A search pattern to find

� Mapper key is file name, line number

� Mapper value is the contents of the line

� Search pattern sent as special parameter

Search Algorithm

� Mapper:

�Given (filename, some text) and “pattern”, if

“text” matches “pattern” output (filename, _)

� Reducer:

� Identity function

Search: An Optimization

� Once a file is found to be interesting, we
only need to mark it that way once

� Use Combiner function to fold redundant
(filename, _) pairs into a single one

�Reduces network I/O

TF-IDF

� Term Frequency – Inverse Document
Frequency

�Relevant to text processing

�Common web analysis algorithm

The Algorithm, Formally

•| D | : total number of documents in the corpus

• : number of documents where the term ti appears (that is).

Information We Need

� Number of times term X appears in a
given document

� Number of terms in each document

� Number of documents X appears in

� Total number of documents

Job 1: Word Frequency in Doc

� Mapper

� Input: (docname, contents)

�Output: ((word, docname), 1)

� Reducer

�Sums counts for word in document

�Outputs ((word, docname), n)

� Combiner is same as Reducer

Job 2: Word Counts For Docs

� Mapper
� Input: ((word, docname), n)

�Output: (docname, (word, n))

� Reducer
�Sums frequency of individual n’s in same doc

�Feeds original data through

�Outputs ((word, docname), (n, N))

Job 3: Word Frequency In Corpus

� Mapper

� Input: ((word, docname), (n, N))

�Output: (word, (docname, n, N, 1))

� Reducer

�Sums counts for word in corpus

�Outputs ((word, docname), (n, N, m))

Job 4: Calculate TF-IDF

� Mapper

� Input: ((word, docname), (n, N, m))

�Assume D is known (or, easy MR to find it)

�Output ((word, docname), TF*IDF)

� Reducer

�Just the identity function

Working At Scale

� Buffering (doc, n, N) counts while
summing 1’s into m may not fit in memory

�How many documents does the word “the”

occur in?

� Possible solutions

� Ignore very-high-frequency words

�Write out intermediate data to a file

�Use another MR pass

Final Thoughts on TF-IDF

� Several small jobs add up to full algorithm

� Lots of code reuse possible

�Stock classes exist for aggregation, identity

� Jobs 3 and 4 can really be done at once in
same reducer, saving a write/read cycle

� Very easy to handle medium-large scale,
but must take care to ensure flat memory
usage for largest scale

BFS: Motivating Concepts

� Performing computation on a graph data
structure requires processing at each node

� Each node contains node-specific data as
well as links (edges) to other nodes

� Computation must traverse the graph and
perform the computation step

� How do we traverse a graph in
MapReduce? How do we represent the
graph for this?

Breadth-First Search

• Breadth-First
Search is an
iterated algorithm
over graphs

• Frontier advances
from origin by one
level with each pass

�
�

� �

�

�

�

�

�

�

Breadth-First Search & MapReduce

� Problem: This doesn't “fit” into MapReduce

� Solution: Iterated passes through
MapReduce – map some nodes, result
includes additional nodes which are fed into
successive MapReduce passes

Breadth-First Search & MapReduce

� Problem: Sending the entire graph to a map
task (or hundreds/thousands of map tasks)
involves an enormous amount of memory

� Solution: Carefully consider how we
represent graphs

Graph Representations

• The most straightforward representation of
graphs uses references from each node to
its neighbors

Direct References

� Structure is inherent
to object

� Iteration requires
linked list “threaded
through” graph

� Requires common
view of shared
memory
(synchronization!)

� Not easily serializable

class GraphNode

{

Object data;

Vector<GraphNode>

out_edges;

GraphNode

iter_next;

}

Adjacency Matrices

� Another classic graph representation.
M[i][j]= '1' implies a link from node i to j.

� Naturally encapsulates iteration over nodes

01014

00103

11012

10101

4321

Adjacency Matrices: Sparse
Representation

� Adjacency matrix for most large graphs
(e.g., the web) will be overwhelmingly full of
zeros.

� Each row of the graph is absurdly long

� Sparse matrices only include non-zero
elements

Sparse Matrix Representation

1: (3, 1), (18, 1), (200, 1)

2: (6, 1), (12, 1), (80, 1), (400, 1)

3: (1, 1), (14, 1)

…

Sparse Matrix Representation

1: 3, 18, 200

2: 6, 12, 80, 400

3: 1, 14

…

Finding the Shortest Path

• A common graph
search application is
finding the shortest
path from a start node
to one or more target
nodes

• Commonly done on a
single machine with
Dijkstra's Algorithm

• Can we use BFS to
find the shortest path
via MapReduce?

This is called the single-source shortest path problem. (a.k.a. SSSP)

Finding the Shortest Path: Intuition

� We can define the solution to this problem
inductively:
�DistanceTo(startNode) = 0
�For all nodes n directly reachable from

startNode, DistanceTo(n) = 1
�For all nodes n reachable from some other set

of nodes S,
DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

From Intuition to Algorithm

� A map task receives a node n as a key, and
(D, points-to) as its value
�D is the distance to the node from the start
�points-to is a list of nodes reachable from n
� ∀p ∈ points-to, emit (p, D+1)

� Reduce task gathers possible distances to
a given p and selects the minimum one

What This Gives Us

� This MapReduce task can advance the
known frontier by one hop

� To perform the whole BFS, a non-
MapReduce component then feeds the
output of this step back into the
MapReduce task for another iteration
�Problem: Where'd the points-to list go?
�Solution: Mapper emits (n, points-to) as well

Blow-up and Termination

� This algorithm starts from one node
� Subsequent iterations include many more

nodes of the graph as frontier advances
� Does this ever terminate?

�Yes! Eventually, routes between nodes will
stop being discovered and no better distances
will be found. When distance is the same, we
stop

�Mapper should emit (n, D) to ensure that
“current distance” is carried into the reducer

Adding weights

� Weighted-edge shortest path is more useful
than cost==1 approach

� Simple change: points-to list in map task
includes a weight 'w' for each pointed-to
node
�emit (p, D+wp) instead of (p, D+1) for each

node p
�Works for positive-weighted graph

Comparison to Dijkstra

� Dijkstra's algorithm is more efficient
because at any step it only pursues edges
from the minimum-cost path inside the
frontier

� MapReduce version explores all paths in
parallel; not as efficient overall, but the
architecture is more scalable

� Equivalent to Dijkstra for weight=1 case

PageRank: Random Walks Over
The Web

� If a user starts at a random web page and
surfs by clicking links and randomly
entering new URLs, what is the probability
that s/he will arrive at a given page?

� The PageRank of a page captures this
notion
�More “popular” or “worthwhile” pages get a

higher rank

PageRank: Visually

���������	

������������	��

��������
����	

PageRank: Formula

Given page A, and pages T
1

through T
n

linking to A, PageRank is defined as:

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... +

PR(T
n
)/C(T

n
))

C(P) is the cardinality (out-degree) of page P

d is the damping (“random URL”) factor

PageRank: Intuition

� Calculation is iterative: PR
i+1

is based on PR
i

� Each page distributes its PR
i
to all pages it

links to. Linkees add up their awarded rank
fragments to find their PR

i+1

� d is a tunable parameter (usually = 0.85)
encapsulating the “random jump factor”

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))

PageRank: First Implementation

� Create two tables 'current' and 'next' holding
the PageRank for each page. Seed 'current'
with initial PR values

� Iterate over all pages in the graph,
distributing PR from 'current' into 'next' of
linkees

� current := next; next := fresh_table();

� Go back to iteration step or end if converged

Distribution of the Algorithm

� Key insights allowing parallelization:
�The 'next' table depends on 'current', but not on

any other rows of 'next'

�Individual rows of the adjacency matrix can be
processed in parallel

�Sparse matrix rows are relatively small

Distribution of the Algorithm

� Consequences of insights:
�We can map each row of 'current' to a list of

PageRank “fragments” to assign to linkees

�These fragments can be reduced into a single
PageRank value for a page by summing

�Graph representation can be even more
compact; since each element is simply 0 or 1,
only transmit column numbers where it's 1

���������������������������	����������
������	�������������	������������

������������������	�����������
��������	��� ��!������

"��������	���� ���������

Phase 1: Parse HTML

� Map task takes (URL, page content) pairs
and maps them to (URL, (PR

init
, list-of-urls))

�PRinit is the “seed” PageRank for URL

� list-of-urls contains all pages pointed to by URL

� Reduce task is just the identity function

Phase 2: PageRank Distribution

� Map task takes (URL, (cur_rank, url_list))
�For each u in url_list, emit (u, cur_rank/|url_list|)

�Emit (URL, url_list) to carry the points-to list
along through iterations

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))

Phase 2: PageRank Distribution

� Reduce task gets (URL, url_list) and many
(URL, val) values
�Sum vals and fix up with d

�Emit (URL, (new_rank, url_list))

PR(A) = (1-d) + d (PR(T
1
)/C(T

1
) + ... + PR(T

n
)/C(T

n
))

Finishing up...

� A subsequent component determines
whether convergence has been achieved
(Fixed number of iterations? Comparison of
key values?)

� If so, write out the PageRank lists - done!

� Otherwise, feed output of Phase 2 into
another Phase 2 iteration

PageRank Conclusions

� MapReduce runs the “heavy lifting” in
iterated computation

� Key element in parallelization is
independent PageRank computations in a
given step

� Parallelization requires thinking about
minimum data partitions to transmit (e.g.,
compact representations of graph rows)
�Even the implementation shown today doesn't

actually scale to the whole Internet; but it works
for intermediate-sized graphs

