Video Coding (esp. ITU & ISO/IEC Standards)
Gary J. Sullivan, Ph.D.

ITU-T VCEG Rapporteur | Chair
ISO/IEC MPEG Video Rapporteur | Co-Chair
ITU/ISO/IEC JVT Rapporteur | Co-Chair
IEEE Fellow (2006)

Microsoft Corporation Video Architect

March 2006

Video Coding Standardization Organizations

1. Two organizations have historically dominated general-purpose video compression standardization:
 - ITU-T Video Coding Experts Group (VCEG) — Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT), Study Group 16, Question 6
 - ISO/IEC Moving Picture Experts Group (MPEG) - International Standardization Organization and International Electrotechnical Commission, Joint Technical Committee Number 1, Subcommittee 29, Working Group 11

2. Recently, the Society for Motion Picture and Television Engineers (SMPTE) has also entered with "VC-1", based on Microsoft’s WMV9 but this talk covers only the ITU and ISO/IEC work.

Video Standards Overview March ’06

Gary J. Sullivan

Chronology of International Video Coding Standards

ISO/IEC

ITU-T

H.120 (1964-1968)

H.261 (1990+)

MPEG-1 (1993)

MPEG-4 Visual (1998-2001+)

Video Standards Overview March ’06

Gary J. Sullivan

The Scope of Picture and Video Coding Standardization

1. Only the Syntax and Decoder are standardized:
 - Permits optimization beyond the obvious
 - Permits complexity reduction for implementability
 - Provides no guarantees of Quality

2. Source
 - Pre-Processing
 - Encoding

3. Destination
 - Post-Processing & Error Recovery
 - Decoding

4. Scope of Standard

Video Standards Overview March ’06

Gary J. Sullivan

Predictive Coding and DPCM

1. Separation quantization of each sample is known as pulse-code modulation (PCM)
2. Predictive Coding or Differential PCM: Generate an estimate for the value of the input data, and encode only the remaining difference.

H.120 : The First Digital Video Coding Standard

 - v1 (1984) had conditional replenishment, DPCM, scalar quantization, variable-length coding, switch for quincunx sampling
 - v2 (1988) added motion compensation and background prediction
 - Operated at 1544 (NTSC) and 2048 (PAL) kbps
 - Few units made, essentially not in use today

Video Standards Overview March ’06

Gary J. Sullivan
“Intra” Picture Coding by DCT

Basic "intra" image representation: Discrete Cosine Transform (DCT) (early '70s, ITU+ISO JPEG approved '92):
- Analyze 8x8 blocks of image according to DCT frequency content (images tend to be smooth)
- Find magnitude of each discrete frequency within the block
- Round off ("quantize") the amounts to scaled integer values ('50s, '60s, ...)
- Send integer approximations to decoder using "Huffman" variable-length codes (VLC, early '50s)

The Discrete Cosine Transform

- The DCT (unitary type II DCT):
 \[F_{x}(n) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \cos \left(\frac{\pi}{N} x(n+\frac{1}{2}) \right) \]
 \[F_{-n}(n) = \frac{(-1)^{n}}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \cos \left(\frac{\pi}{N} x(n+\frac{1}{2}) \right) \]
- The Inverse DCT (unitary type III DCT):
 \[f(x) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} F_{x}(n) \cos \left(\frac{\pi}{N} x(n+\frac{1}{2}) \right) \]
- Definition of Constants
 \[c_{x} = 1/\sqrt{2} \text{ for } n = 0, \text{ otherwise } 1. \]
 \[c_{n} = 1/\sqrt{N} \text{ for } n = 0, \text{ otherwise } 1. \]

Coefficient Scan Order: The Zig-Zag Scan

Interframe Motion Prediction

- Large areas of images stay the same from frame to frame, changing mostly due to motion
- Conditional Replenishment: Can signal to leave a block area of the image unchanged, or replace it with new data
- Interframe Difference Coding: Could encode a refinement to the value of an area
- Displaced Frame Difference Coding: Can predict an image area by copying some nearby part of the previous image (motion compensation) and optionally adding some refinement

P-Picture Predictive Coding

H.261: The Basis of Modern Video Compression

- ITU-T (ex-CCITT) Rec. H.261: The first widespread practical success
 - First design (late '90) embodying typical structure dominating today:
 - 16x16 macroblock motion compensation, 8x8 DCT
 - scalar quantization, zig-zag scan, and run-length
 - variable-length coding
 - Key aspects later dropped by other standards: loop filter, integer motion comp., 2-D VLC, header overhead
 - v2 (early '93) added a backward-compatible high-resolution graphics trick mode
 - Operated at 64-240 kbps
 - Still in use, although mostly as a backward-compatibility feature – overtaken by H.263
The luma and chroma planes are divided into blocks. Luma blocks are associated with Cb and Cr blocks to create a macroblock.

H.261 & 3 Macroblock Structure

- Luma sample
- Chroma sample
- Two chroma fields
- Intra/Inter Decisions:
 - 16x16 macroblock
 - Intra DCT of 8x8 blocks
 - 16x16 1-pel motion
 - 16x16 1/2-pel motion
 - (AP mode)
 - 8x8 1/2-pel motion with overlapping

Predictive Coding with (old-fashioned) B Pictures

- B = luma sample
- C = chroma sample
- Two chroma fields
- Intra/Inter Decisions:
 - 16x16 macroblock
 - Intra DCT of 8x8 blocks
 - 16x16 1-pel motion
 - 16x16 1/2-pel motion
 - (AP mode)
 - 8x8 1/2-pel motion with overlapping

Basic Hybrid Structure of H.261, etc. (late '90)

- Input Video Signal
- Split into Macroblocks 16x16 pixels
- Encoder
- Control
- Decoder
- Control
- moved
- Transform
- Quantized
- Prediction
- Motion
- Estimation
- Data
- Quenched

Predictive Coding with (old-fashioned) B Pictures

- B = luma sample
- C = chroma sample
- Two chroma fields
- Intra/Inter Decisions:
 - 16x16 macroblock
 - Intra DCT of 8x8 blocks
 - 16x16 1-pel motion
 - 16x16 1/2-pel motion
 - (AP mode)
 - 8x8 1/2-pel motion with overlapping

MPEG-1: Practical Video at Higher Rates than H.261

- Better quality to H.261 when operated at a higher bit rate (≥ 1 Mbps for CIF 352x288 resolution)
- Can provide approximately DVD quality at 1.5-2 Mbps using SIF 352x240/288 resolution
- Technical features inherited from H.261
 - 16x16 macroblocks
 - 16x16 Motion compensation
 - 8x8 DCT
 - Scalar quantization
 - Zig-zag scan
 - Run-length
 - Variable-length coding
 - DC-only "D" pictures
 - Quantization weighting matrices

Interlaced Video

(Welcome to the 1940 Analog World)

- Vertical
- Horizontal
- Temporal
MPEG-2/H.262: Even Higher Bit Rates and Interlace

- Formally ISO/IEC 13818-2 & ITU-T H.262, developed ’94 jointly by ITU-T and ISO/IEC SC29 WD11 (MPEG) – Now in very wide use for DVD and standard and high-definition DTV (the most commonly used video coding standard)
 - Primary new technical features:
 - Support for interlaced-scan pictures
 - Increased DC quantization precision
 - Also:
 - Various forms of scalability (SNR, Spatial, breakpoint)
 - I-picture concealment motion vectors
 - Essentially the same as MPEG-1 for progressive-scan pictures, and MPEG-1 forward compatibility required
 - Not especially useful below 2-3 Mbps (range of use normally 2-5 Mbps SDTV broadcast, 6-9 DVD, 20 HDTV)
 - Essentially fixed frame rate

What Was in H.263 Version 1?

- “Baseline” Algorithm Features beat H.261
 - Half-pel motion compensation (also in MPEG-1)
 - 3-D variable length coding of DCT coefficients
 - Median motion vector prediction
 - More efficient coding pattern signaling (?)
 - Deletable GOB header overhead (also in MPEG-1, but not 2?)

- Optional Enhanced Modes
 - Increased motion vector range with picture extrapolation
 - Variable-size overlapped motion with picture extrapolation
 - PB frames (bi-directional prediction)
 - Arithmetic entropy coding
 - Continuous presence multipoint / video mux

H.263++ Version 3 Features

- Annex U: Fidelity enhancement by macroblock and block-level reference picture selection – a significant improvement in picture quality
- Annex V: Packet Loss & Error Resilience using data partitioning with reversible VLCs (roughly similar to MPEG-4 data partitioning, but improved by using reversible coding of motion vectors rather than coefficients)
- Annex W: Additional Supplemental Enhancement Information
 - IDCT Mismatch Elimination (specific fixed-point fast IDCT)
 - Arbitrary binary user data
 - Text messages (arbitrary, copyright, caption, video description, and URI)
 - Error Resilience:
 - Picture header repetition (current, previous, next+TR, next-TR)
 - Spare reference pictures for error concealment
 - Interlaced field indications (top & bottom)

H.263: The Next Generation

- ITU-T Rec. H.263 (v1: 1995): The next generation of video coding performance, developed by ITU-T – the current premier ITU-T video standard (has overtaken H.261 as dominant videoconferencing codec)
 - Superior quality to prior standards at all bit rates (except perhaps for interlaced video)
 - Better by a factor of two at very low rates
 - Versions 2 (late 1997/early 1998) & v3 (2000) later developed with a large number of new features
 - Profiles defined early 2001
 - A somewhat tangled relationship with MPEG-4

H.263+ Feature Categories

- Error resilience
- Improved compression efficiency (e.g., 15-25% overall improvement over H.263v1)
- Custom and Flexible Video Formats
- Scalability for resilience and multipoint
- Supplemental enhancement information

MPEG-4 “Visual”: Baseline H.263 and Many Creative Extras

- MPEG-4 part 2 (v1: early 1999), formally ISO/IEC 14496-2
- Contains the H.263 baseline design
 - coding efficiency enhancements (esp. at low rates)
- Adds many creative new extras:
 - more coding efficiency enhancements
 - error resilience / packet loss enhancements
 - segmented coding of shapes
 - zero-tree wavelet coding of still textures
 - coding of synthetic and semi-synthetic content,
 - 10 & 12-bit sampling,
 - more
 - v2 (early 2000) & v3 (early 2001) & ...
MPEG-4 Visual Focus: Simple Profile
- The most basic video coding profile of MPEG-4
- No shape coding
- Progressive-scan video only
- Most popular in low cost / low rate / low resolution apps (e.g., mobile) – top bit rate & resolution limited
- Basic contents
 - H.263 baseline
 - Motion vectors over picture boundaries
 - Variable block-size motion compensation
 - Intra DCT coefficient prediction
 - Handling of four streams in most levels
 - Error / packet-loss features – data partitioning, RVLC

MPEG-4 Visual Focus: Advanced Simple Profile
- Target goal: General rectangular video with improved coding efficiency
- Progressive-scan and interlaced video support
- Up to SDTV resolution
- Basic contents
 - All of Simple profile
 - B pictures
 - Global motion compensation
 - Quarter-sample motion compensation
 - Interface handling

MPEG-4 Visual Focus: Studio Profile
- Target goal: studio & professional use
- Progressive-scan and interlaced video support
- Up to very high resolution and bit rate
- Basic contents
 - Enhanced-accuracy IDCT
 - B pictures
 - 10 & 12 bit sample accuracy
 - 4:2:2 & 4:4:4 chroma sampling structures

The H.264/MPEG-4 Advanced Video Coding (AVC) Standard
Gary J. Sullivan, Ph.D.
ITU-T VCEG Rapporteur | Chair
ISO/IEC MPEG Video Rapporteur | Co-Chair
Microsoft Corporation Video Architect
March 2006

The Advanced Video Coding Project
AVC = ITU-T H.264 / MPEG-4 part 10
- Aug 1999: 1st test model (TML-1)
- July 2001: MPEG open call for technology; H.26L demo’ed
- Dec 2001: Formation of the Joint Video Team (JVT) between VCEG and MPEG to finalize H.26L as a new joint project (similar to MPEG-2/H.262)
- July 2002: Final Committee Draft status in MPEG
- Dec ’02 technical freeze, FCD ballot approved
- May ’03 completed in both orgs
- July ’04 Fidelity Range Extensions (FRExt) completed
- Jan ’05 Scalable Video Coding launched

H.264/MPEG-4 AVC Objectives
- Primary technical objectives:
 - Significant improvement in coding efficiency
 - High loss/error robustness
 - “Network Friendliness” (carry it well on MPEG-2 or RTP or H.32x or in MPEG-4 file format or MPEG-4 systems or …)
 - Low latency capability (better quality for higher latency)
 - Exact match decoding
- Additional version 2 objectives (in FRExt):
 - Professional applications (more than 8 bits per sample, 4:4:4 color sampling, etc.)
 - Higher-quality high-resolution video
 - Alpha plane support (a degree of “object” functionality)
Relating to Other ITU & MPEG Standards

- Same design to be approved in both ITU-T VCEG and ISO/IEC MPEG
- In ITU-T VCEG this is a new & separate standard
 - ITU-T Recommendation H.264
 - ITU-T Systems (H.32x) support it
- In ISO/IEC MPEG this is a new “part” in the MPEG-4 suite
 - Separate codec design from prior MPEG-4 visual
 - New part 10 called “Advanced Video Coding” (AVC – similar to “AAC” position in MPEG-2 as separate codec)
 - Not backward or forward compatible with prior standards (incl. the prior MPEG-4 visual spec. – core technology is different)
 - MPEG-4 Systems / File Format supports it
- H.222.0 / MPEG-2 Systems also supports it

A Comparison of Performance

- Text of different standards (ICIP 2002 study)
- Using same rate-distortion optimization techniques for all codecs
 - Four QPF sequences coded at 10 Hz and 15 Hz (Foreman, Container, News, Tempeste) and
 - Four CIF sequences encoded at 15Hz and 30 Hz (Bus, Flower Garden, Mobile and Calendar, and Tempeste)
- Real-time conversion test: No B frame
 - Four QPF sequences encoded at 15Hz and 15Hz (Akiyo, Foreman, Mother and Daughter, and Tempeste)
 - Four CIF sequences encoded at 15Hz and 30Hz (Carphone, Foreman, Paris, and Swan)
- Compare four codecs using PSNR measure:
 - MPEG-2 (in high-latency/streaming test only)
 - H.263 (high-latency profile, conversational high-compression profile, baseline profile)
 - MPEG-4 Visual (simple and advanced simple profiles with & without B pictures)
 - H.264/AVC (with & without B pictures)
- Note: These test results are from a private study and are not an endorsed report of the JVT, VCEG or MPEG organizations.

Caution: Your Mileage Will Vary

- This encoding software may not represent implementation quality
- These tests only up to CIF (quarter-standard-definition) resolution
- Interlace, SDTV, and HDTV not tested in this test
- Test sequences may not be representative of the variety of content encountered by applications
- These tests so far not aligned with profile designs
- This study reports PSNR, but perceptual quality is what matters

Computing Resources for the New Design

- New design includes relaxation of traditional bounds on computing resources – rough guess 2-3x the MIPS, ROM & RAM requirements of MPEG-2 for decoding, 3-4x for encoding
- Particularly an issue for low-power (e.g., mobile) devices
- Problem areas:
 - Smaller block sizes for motion compensation (cache access issues)
 - Longer filters for motion compensation (more memory access)
 - Multi-frame motion compensation (more memory for reference frame storage)
 - In-loop deblocking filter (more processing & memory access)
 - More segmentations of macroblock to choose from (more searching in the encoder)
 - More methods of predicting intra data (more searching)
 - Arithmetic coding (adaptivity, computation on output bits)
AVC Version 1 Profiles

- **Three profiles in version 1: Baseline, Main, and Extended**
- **Baseline (esp. Videoconferencing & Wireless)**
 - I and P progressive-scan picture coding (not B)
 - In-loop de-blocking filter
 - 1/4-sample motion compensation
 - Tree-structured motion segmentation down to 4x4 block size
 - VLC-based entropy coding
 - Some enhanced error resilience features
 - Flexible macroblock ordering/arbitrary slice ordering
 - Redundant slices

Amendment 1: Fidelity-Range Extensions

- **AVC standard finished 2003**
 - ITU-T/H.264 finalized May, 2003
 - MPEG-4 AVC finalized July, 2003 (same thing)
 - Only corrigenda (bug fixes) since then

- **Fidelity-Range Extensions (FRExt)**
 - New work item initiated in July 2003
 - More than 8 bits, color other than 4:2:0
 - Alpha coding
 - More coding efficiency capability
 - Also new supplemental information

Non-Baseline AVC Version 1 Profiles

- **Main Profile (esp. Broadcast)**
 - All Baseline features except enhanced error resilience features
 - Interlaced video handling
 - Generalized B pictures
 - Adaptive weighting for B and P picture prediction
 - CABAC (arithmetic entropy coding)

- **Extended Profile (esp. Streaming)**
 - All Baseline features
 - Interlaced video handling
 - Generalized B pictures
 - Adaptive weighting for B and P picture prediction
 - More error resilience: Data partitioning
 - SP/SP switching pictures

FRExt Finished July 04

- **Project initiated July 2003**
 - Motivations
 - Higher quality, higher rates
 - 4:4:4, 4:2:2, and also 4:2:0
 - 8, 10, or 12 bits (14 bits considered and not included)
 - Lossless
 - Stereo
 - Finished in one year! (July 04)

New Things in FRExt – Part 1

- **Larger transforms**
 - 8x8 transform (again!)
 - Drop 4x8, 8x4, or larger, 16-point...

- **Filtered intra prediction modes for 8x8 block size**
 - Quantization matrix
 - 4x4, 8x8, intra, inter trans. coefficients weighted differently
 - Old idea, dating to JPEG and before (circa 1986?)
 - Full capabilities not yet explored (visual weighting)

- **Coding in various color spaces**
 - 4:4:4, 4:2:2, 4:2:0, Monochrome, with/without Alpha
 - New integer color transform (a VUI-message item)
New Things in FRExt – Part 2

§ Efficient lossless interframe coding
§ Film grain characterization for analysis/synthesis representation
§ Stereo-view video support
§ Deblocking filter display preference

8x8 16-Bit (Bossen) Transform

\[
\begin{bmatrix}
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
12 & 10 & 6 & 3 & -3 & -6 & -10 & -12 \\
8 & 4 & -4 & -8 & -8 & -4 & 4 & 8 \\
10 & -3 & -12 & -6 & 6 & 12 & 3 & -10 \\
8 & -8 & -8 & 8 & 8 & -8 & -8 & 8 \\
6 & -12 & 3 & 10 & -10 & -3 & 12 & -6 \\
4 & -8 & 8 & -4 & -4 & 8 & -8 & 4 \\
3 & -6 & 10 & -12 & 12 & -10 & 6 & -3
\end{bmatrix}
\]

8x8 Transform Advantage
(JVT-K028, IBBP coding, prog. scan)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>% BD bit-rate reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie 1</td>
<td>11.59</td>
</tr>
<tr>
<td>Movie 2</td>
<td>12.71</td>
</tr>
<tr>
<td>Movie 3</td>
<td>12.01</td>
</tr>
<tr>
<td>Movie 4</td>
<td>11.06</td>
</tr>
<tr>
<td>Movie 5</td>
<td>13.46</td>
</tr>
<tr>
<td>Crawford</td>
<td>10.93</td>
</tr>
<tr>
<td>Rawbed</td>
<td>15.65</td>
</tr>
<tr>
<td>Average</td>
<td>12.48</td>
</tr>
</tbody>
</table>

Quantization Matrix

§ Similar concept to MPEG-2 design
§ Vary step size based on frequency
§ Adapted to modified transform structure
§ More efficient representation of weights
§ Eight downloadable matrices (at least 4:2:0)
 - Intra 4x4 Y, Cb, Cr
 - Intra 8x8 Y
 - Inter 4x4 Y, Cb, Cr
 - Inter 8x8 Y

New Profiles Created by FRExt

§ 4:2:0, 8-bit: “High” (HP)
§ 4:2:0, 10-bit: “High 10” (Hi10)
§ 4:2:2, 10-bit: “High 4:2:2” (Hi422)
§ 4:4:4, 12-bit: “High 4:4:4” (Hi444)
§ Effectively the same tools, but acting on different input data (with a couple of exceptions in the 4:4:4 profile)

Some Notes on Quality Testing

§ Use appropriate “High” profile (incl. adaptive transform)
§ If testing for PSNR, use “flat” quant matrices
§ Otherwise, use “non-flat” quant matrices
§ Use more than 1 or 2 reference pictures
§ Use hierarchical reference frames coding structure
§ Use CABAC entropy coding
§ If testing high-quality PSNR, use adaptive quantization
§ Use rate-distortion optimization in encoder
§ Use large-range good-quality motion search
§ Use bi-predictive search optimization (see JVT-N014)

A Performance Test for High Profile (from JVT-L033 - Panasonic)

- Subjective tests by Blu-Ray Disk Founders of FRext HP
 - 4:2:0/8 (HP) 1920x1080x24p (1080p), 3 clips.
 - Nominal 3:1 advantage to MPEG-2
 - 8 Mbps HP scored better than 24 Mbps MPEG-2
 - Apparent transparency at 16 Mbps

For Further Information

- JVT, MPEG, and VCEG management team members:
 - Gary Sullivan (garysull@microsoft.com)
 - Jens Ohm (ohm@lent.neth-aachen.de)
 - Ajay Luthra (ajyhra@motorola.com)
 - Thomas Wiegand (wiegand@hhv.de)

- IEEE Transactions on Circuits and Systems for Video Technology Special Issue on H.264/AVC (July 2003)
- Paper in Proceedings of IEEE January 2005 (Sullivan & Wiegand)
- I. Richardson, H.264 and MPEG-4 Video Compression, 2003
- Overview incl. FRext: SPIE Aug 2004 (Sullivan, Topiwala, & Luthra)
- Paper at VCIP 2005: Meta-overview and deployment
- Wikipedia H.264 page