Vector Quantization

- **Vectors**
 - An a x b block can be considered to be a vector of dimension \(ab \).
 - Nearest means in terms of Euclidian distance or Euclidian squared distance. Both equivalent.
 - Distance = \(\sqrt{(w-w_j)^2 + (x-x_j)^2 + (y-y_j)^2 + (z-z_j)^2} \)
 - Squared Distance = \((w-w_j)^2 + (x-x_j)^2 + (y-y_j)^2 + (z-z_j)^2 \)
 - Squared distance is easier to calculate.

- **Vector Quantization Facts**
 - The image is partitioned into a x b blocks.
 - The codebook has \(n \) representative a x b blocks called codewords, each with an index.
 - Compression with fixed length codes is \(\log_n \frac{ab}{n} \) bpp
 - Example: \(a = b = 4 \) and \(n = 1,024 \)
 - Compression is \(10/16 = .63 \) bpp
 - Compression ratio is \(8 : .63 = 12.8 : 1 \)
 - Better compression with entropy coding of indices

- **Examples**
 - 4 x 4 blocks: .63 bpp
 - 4 x 8 blocks: .31 bpp
 - 8 x 8 blocks: .16 bpp
 - Codebook size = 1,024

- **Scalar vs. Vector**
 - Pixels within a block are correlated.
 - This tends to minimize the number of codewords needed to represent the vectors well.
 - More flexibility.
 - Different size blocks
 - Different size codebooks
Encoding and Decoding

- **Encoding:**
 - Scan the a x b blocks of the image. For each block find the nearest codeword in the codebook and output its index.
 - Nearest neighbor search.
- **Decoding:**
 - For each index output the codeword with that index into the destination image.
 - Table lookup.

The Codebook

- Both encoder and decoder must have the same codebook.
- The codebook must be useful for many images and be stored somewhere.
- The codebook must be designed properly to be effective.
- Design requires a representative training set.
- These are major drawbacks to VQ.

Codebook Design Problem

- Input: A training set X of vectors of dimension d and a number n. (d = a x b and n is number of codewords)
- Output: n codewords c(0), c(1),...,c(n-1) that minimizes the distortion.
 \[D = \sum_{x \in X} \|x - c(\text{index}(x))\|^2 \] sum of squared distances
 where index(x) is the index of the nearest codeword to x.
 \[\|x_0, x_1, \ldots, x_d\|_2^2 = x_0^2 + x_1^2 + \cdots + x_{d-1}^2 \] squared norm

GLA

- The Generalized Lloyd Algorithm (GLA) extends the Lloyd algorithm for scalars.
 – Also called LBG after inventors Linde, Buzo, Gray (1980)
- It can be very slow for large training sets.

GLA Example (1)

```
Choose a training set X and small error tolerance \(\epsilon > 0\).
Choose start codewords c(0),c(1),...,c(n-1)
Compute X(j) := \{x : x is a vector in X closest to c(j)\}
Compute distortion D for c(0),c(1),...,c(n-1)
Repeat
  Compute new codewords
  \[ c'(j) := \text{round} \left( \frac{1}{|X(j)|} \sum_{x \in X(j)} x \right) \] (centroid)
  Compute X'(j) := \{x : x is a vector in X closest to c'(j)\}
  Compute distortion D' for c'(0),c'(1),...,c'(n-1)
  if |(D – D')/D| < \(\epsilon\) then quit
  else c := c'; X := X'; D := D'
End[repeat]
```
Codeword Splitting

- It is possible that a chosen codeword represents no training vectors, that is, \(X(j) \) is empty.
 - Splitting is an alternative codebook design algorithm that avoids this problem.

- Basic Idea
 - Select codeword \(c(j) \) with the greatest distortion.
 \[
 D(j) = \sum_{k \neq j} \| x_k - c_j \|
 \]
 - Split it into two codewords then do the GLA.

Example of Splitting

\[
\begin{align*}
&\text{Initially } c(0) \text{ is centroid of training set} \\
&\text{Split it into two codewords then do the GLA.}
\end{align*}
\]
Example of Splitting

Split $c(1) = c(0) + \epsilon$

Example of Splitting

Apply GLA

$c(0)$ has max distortion so split it.

Example of Splitting

$c(2)$ has max distortion so split it.

Example of Splitting

$c(3)$

Example of Splitting

$c(4)$
GLA Advice

- Time per iteration is dominated by the partitioning step, which is \(m \) nearest neighbor searches where \(m \) is the training set size.
 - Average time per iteration \(O(m \log n) \) assuming \(d \) is small.
- Training set size.
 - Training set should be at least 20 training vectors per code word to get reasonable performance.
 - Too small a training set results in “over training”.
- Number of iterations can be large.

Encoding

- Naive method.
 - For each input block, search the entire codebook to find the closest codeword.
 - Time \(O(Tn) \) where \(n \) is the size of the codebook and \(T \) is the number of blocks in the image.
 - Example: \(n = 1024, T = 256 \times 256 = 65,536 \) (2 x 2 blocks for a 512 x 512 image)
 \[nT = 1024 \times 65,536 = 2^{26} \approx 67 \text{ million distance calculations.} \]
- Faster methods are known for doing “Full Search VQ”. For example, k-d trees.
 - Time \(O(T \log n) \)