CSE 490 G
Introduction to Data Compression
Winter 2006

Golomb Codes
Tunstall Codes

Run-Length Coding

- Lots of 0's and not too many 1's.
 - Fax of letters
 - Graphics
- Simple run-length code
 - Input: 000000100000000100000000000100010001....
 - Symbols: 6 9 10 3 2...
 - Code the bits as a sequence of integers
 - Problem: How long should the integers be?

Golomb Code of Order m
Variable Length Code for Integers

- Let \(n = qm + r \) where \(0 \leq r < m \).
 - Divide \(m \) into \(n \) to get the quotient \(q \) and remainder \(r \).
- Code for \(n \) has two parts:
 1. \(q \) is coded in unary
 2. \(r \) is coded as a fixed prefix code

Example: \(m = 5 \)

```
Input: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 ......
```

```
Output: 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0
```

Alternative Explanation
Golomb Code of order 5

```
Input | Output
-----|-------
0000  | 1
0001  | 0111
0010  | 0110
0101  | 010
0110  | 001
1000  |
```

Variable length to variable length code.

```
Run Length Example: \( m = 5 \)
```

```
Input: 000000100000000100000000000100010001....
```

```
Output: 000000100000000100000000000100010001....
```

```
Symbols: 6 9 10 3 2...
```

```
Input: 010 1001 10111 11000 1111010
```

```
Output: 010 1001 0111 11000 1111010
```

In this example we coded 17 bit in only 9 bits.
Choosing m

• Suppose that 0 has the probability \(p \) and 1 has probability \(1-p \).
• The probability of 0^n1 is \(p^n(1-p) \). The Golomb code of order
 \[m = \left\lceil \frac{-1}{\log_2 p} \right\rceil \]
 is optimal.
• Example: \(p = \frac{127}{128} \).
 \[m = \left\lceil \frac{-1}{\log_2 (127/128)} \right\rceil = 89 \]

Average Bit Rate for Golomb Code

Average Bit Rate = \[\frac{\text{Average output code length}}{\text{Average input code length}} \]

• \(m = 4 \) as an example. With \(p \) as the probability of 0.
 \[ABR = \frac{5p^4 + 3p^3(1-p) + 3p^2(1-p) + 3p(1-p) + 3}{4p^4 + 4p^3(1-p) + 3p^2(1-p) + 2p(1-p) + (1-p)} \]

Comparison of GC with Entropy

Notes on Golomb codes

• Useful for binary compression when one symbol is much more likely than another.
 – binary images
 – fax documents
 – bit planes for wavelet image compression
• Need a parameter (the order)
 – training
 – adaptively learn the right parameter
• Variable-to-variable length code
• Last symbol needs to be a 1
 – coder always adds a 1
 – decoder always removes a 1

Tunstall Codes

• Variable-to-fixed length code
• Example

\[
\begin{array}{c|c}
\text{input} & \text{output} \\
\hline
a & 000 \\
b & 001 \\
c & 010 \\
d & 011 \\
cca & 100 \\
dcb & 101 \\
c & 110 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{a} & 000 \\
\text{b} & 001 \\
\text{cca} & 010 \\
\text{cb} & 011 \\
\text{c} & 100 \\
\text{d} & 101 \\
\text{ccc} & 110 \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{a} & 010 \\
\text{b} & 011 \\
\text{cca} & 100 \\
\text{cb} & 101 \\
\text{c} & 110 \\
\end{array}
\]

Tunstall code Properties

1. No input code is a prefix of another to assure unique encodability.
2. Minimize the number of bits per symbol.
Prefix Code Property

Use for unused code

• Consider the string “cc”, if it occurs at the end of the data. It does not have a code.
• Send the unused code and some fixed code for the cc.
• Generally, if there are k internal nodes in the prefix tree then there is a need for k-1 fixed codes.

Designing a Tunstall Code

• Suppose there are m initial symbols.
• Choose a target output length n where \(2^n > m\).
 1. Form a tree with a root and m children with edges labeled with the symbols.
 2. If the number of leaves is \(> 2^n - m\) then halt.*
 3. Find the leaf with highest probability and expand it to have m children.** Go to 2.

* In the next step we will add m-1 more leaves.
** The probability is the product of the probabilities of the symbols on the root to leaf path.

Example

• \(P(a) = .7, P(b) = .2, P(c) = .1\)
• \(n = 3\)

Example

• \(P(a) = .7, P(b) = .2, P(c) = .1\)
• \(n = 3\)
Bit Rate of Tunstall

- The length of the output code divided by the average length of the input code.
- Let p_i be the probability of, and r_i the length of input code i ($1 \leq i \leq 5$) and let n be the length of the output code.

$$\text{Average bit rate} = \frac{n}{\sum_{i=1}^{n} p_i r_i}$$

Example

```
<table>
<thead>
<tr>
<th></th>
<th>010</th>
<th>001</th>
<th>011</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>.343</td>
<td>.098</td>
<td>.049</td>
</tr>
<tr>
<td>b</td>
<td>.14</td>
<td>.07</td>
<td>.2</td>
</tr>
<tr>
<td>c</td>
<td>.098</td>
<td>.049</td>
<td>.98</td>
</tr>
</tbody>
</table>
```

$\text{ABR} = \frac{3}{3} (.343 + .098 + .049) + 2 (.14 + .07) + .2 + .1] = 1.37 \text{ bits per symbol}$

$\text{Entropy} = 1.16 \text{ bits per symbol}$

Notes on Tunstall Codes

- Variable-to-fixed length code
- Error resilient
 - A flipped bit will introduce just one error in the output
 - Huffman is not error resilient. A single bit flip can destroy the code.