Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
 - Each symbol is mapped to a binary string.
 - More frequent symbols have shorter codes.
 - No code is a prefix of another.
- Example:
 - a: 0
 - b: 100
 - c: 101
 - d: 11

Variable Rate Code Example

- Example: a, b, 10, c, 10, d, 11
- Coding:
 - aabdc = 16 bits
 - 00100111110100
- Prefix code ensures unique decodability.
 - a b d c a

Cost of a Huffman Tree

- Let p_1, p_2, \ldots, p_m be the probabilities for the symbols a_1, a_2, \ldots, a_m, respectively.
- Define the cost of the Huffman tree T to be
 $$C(T) = \sum_{i=1}^{m} p_i$$
 where r_i is the length of the path from the root to a_i.
- $C(T)$ is the expected length of the code of a symbol coded by the tree T. $C(T)$ is the bit rate of the code.

Example of Cost

- Example: a, 1/2, b, 1/8, c, 1/8, d, 1/4
- $C(T) = \frac{1}{2} \times 1/2 + \frac{3}{8} \times 1/8 + \frac{3}{8} \times 1/8 + 2 \times 1/4 = 1.75$

Huffman Tree

- Input: Probabilities p_1, p_2, \ldots, p_m for symbols a_1, a_2, \ldots, a_m, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes
 $$HC(T) = \sum_{i=1}^{m} p_i r_i$$
 where r_i is the length of the path from the root to a_i. This is the Huffman tree or Huffman code.
Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
 - If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

\[C(T') = C(T) + h_q - h_p + k_p - k_q = C(T) - (h - k)(q - p) < C(T) \]

Optimality Principle 2

- The second lowest probability is a sibling of the smallest in some Huffman tree.
 - If not, we can move it there not raising the cost.

\[C(T') = C(T) + h_q - h_r + k_r - k_q = C(T) - (h - k)(r - q) < C(T) \]

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
 - The resulting tree is optimal for the new symbol set.

\[C(T') = C(T) + (h - 1)(p + q) - h_p - h_q = C(T) - (p + q) \]

Optimality Principle 3 (cont’)

- If T’ were not optimal then we could find a lower cost tree T''. This will lead to a lower cost tree T''' for the original alphabet.

\[C(T'''') = C(T'') + p + q < C(T') + p + q = C(T) \text{ which is a contradiction} \]

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one node is optimal. Otherwise
2. Find the two lowest probability symbols with probabilities p and q respectively.
3. Replace these with a new symbol with probability p + q.
4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Iterative Huffman Tree Algorithm

- form a node for each symbol a with weight p;
- insert the nodes in a min priority queue ordered by probability;
- while the priority queue has more than one element do
 - min1 := delete-min;
 - min2 := delete-min;
 - create a new node n;
 - n.weight := min1.weight + min2.weight;
 - n.left := min1;
 - n.right := min2;
 - insert(n);
- return the last node in the priority queue.
Example of Huffman Tree Algorithm (1)

- \(P(a) = .4, P(b) = .1, P(c) = .3, P(d) = .1, P(e) = .1 \)

Example of Huffman Tree Algorithm (2)

Example of Huffman Tree Algorithm (3)

Example of Huffman Tree Algorithm (4)

Huffman Code

- Average number of bits per symbol is
 \[.4 \cdot 1 + .1 \cdot 4 + .3 \cdot 2 + .1 \cdot 3 + .1 \cdot 4 = 2.1 \]

Optimal Huffman Code vs. Entropy

- \(P(a) = .4, P(b) = .1, P(c) = .3, P(d) = .1, P(e) = .1 \)

 Entropy
 \[
 H = - (.4 \log_2(0.4) + .1 \log_2(0.1) + .3 \log_2(0.3) \\
 + .1 \log_2(0.1) + .1 \log_2(0.1)) \\
 = 2.05 \text{ bits per symbol}
 \]

 Huffman Code
 \[
 HC = .4 \cdot 1 + .1 \cdot 4 + .3 \cdot 2 + .1 \cdot 3 + .1 \cdot 4 \\
 = 2.1 \text{ bits per symbol} \\
 \text{pretty good!}
 \]
In Class Exercise

- P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, P(e) = 1/16
- Compute the Huffman tree and its bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: a:8, b:4, c:2, d:1, e:1. Normalize at the end.

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound:
 \[H \leq HC \leq H + 1 \]
- Huffman code does not work well with a two symbol alphabet.
 - Example: P(0) = 1/100, P(1) = 99/100
 - HC = 1 bit/symbol
 - H = -(1/100)log2(1/100) + (99/100)log2(99/100)
 = .08 bits/symbol

Powers of Two

- If all the probabilities are powers of two then
 \[HC = H \]
- Proof by induction on the number of symbols.
 Let \(p_1 \leq p_2 \leq \ldots \leq p_n \) be the probabilities that add up to 1.
 If \(n = 1 \) then \(HC = H \) (both are zero).
 If \(n > 1 \) then \(p_1 = p_2 = 2^{-k} \) for some \(k \), otherwise the sum cannot add up to 1.
 Combine the first two symbols into a new symbol of probability \(2^{-k} + 2^{-k} = 2^{1-k} \).

Powers of Two (Cont.)

By the induction hypothesis
\[
HC(p_1, p_2, \ldots, p_n) = H(p_1, p_2, \ldots, p_n) - (p_1 + p_2)
\]
By the properties of Huffman trees (principle 3),
\[
HC(p_1, p_2, \ldots, p_n) = HC(p_1, p_2, p_3, \ldots, p_n) + (p_1 + p_2)
\]
Hence,
\[
HC(p_1, p_2, \ldots, p_n) = H(p_1, p_2, \ldots, p_n)
\]

Extending the Alphabet

- Assuming independence \(P(ab) = P(a)P(b) \), so we can lump symbols together.
- Example: P(0) = 1/100, P(1) = 99/100
 - P(00) = 1/10000, P(01) = P(10) = 99/100000, P(11) = 9801/100000.
Quality of Extended Alphabet

- Suppose we extend the alphabet to symbols of length k then
 \[H \leq HC \leq H + 1/k \]

Pros and Cons of Extending the alphabet
- Better compression
- 2k symbols
- Padding needed to make the length of the input divisible by k

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_1x_2...x_n$ we want to take into account x_{n-1} when encoding x_n.
- New model, so entropy based on just independent probabilities of the symbols doesn’t hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: (a,b,c)

<table>
<thead>
<tr>
<th>Prev</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

Multiple Codes

<table>
<thead>
<tr>
<th>Prev</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>.4</td>
</tr>
<tr>
<td>b</td>
<td>.1</td>
</tr>
<tr>
<td>c</td>
<td>.1</td>
</tr>
</tbody>
</table>

Code for first symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>00</td>
</tr>
<tr>
<td>b</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>10</td>
</tr>
<tr>
<td>a b c</td>
<td>00 01 10</td>
</tr>
</tbody>
</table>

Complexity of Huffman Code Design

- Time to design Huffman Code is $O(n \log n)$ where n is the number of symbols.
- Each step consists of a constant number of priority queue operations (2 deletions and 1 insertion).

Approaches to Huffman Codes

1. Frequencies computed for each input
 - Must transmit the Huffman code or frequencies as well as the compressed input
 - Requires two passes
2. Fixed Huffman tree designed from training data
 - Do not have to transmit the Huffman tree because it is known to the decoder.
 - H.263 video coder
3. Adaptive Huffman code
 - One pass
 - Huffman tree changes as frequencies change