CSE 490 GZ
Introduction to Data Compression
Winter 2004

EBCOT

JPEG 2000

History

- Embedded Block Coding with Optimized Truncation (EBCOT)
 - Taubman – journal paper 2000
 - Algorithm goes back to 1998 or maybe earlier
 - Basis of JPEG 2000

- Embedded
 - Prefixes of the encoded bit stream are legal encodings at lower fidelity, like SPIHT and GTW

- Block coding
 - Entropy coding of blocks of bit planes, not block transform coding like JPEG.

Features at a High Level

- SNR scalability (Signal to Noise Ratio)
 - Embedded code - The compressed bit stream can be truncated to yield a smaller compressed image at lower fidelity
 - Layered code – The bit stream can be partitioned into a base layer and enhancement layers. Each enhancement layer improves the fidelity of the image

- Resolution scalability
 - The lowest subband can be transmitted first yielding a smaller image at high fidelity.
 - Successive subbands can be transmitted to yield larger and larger images

Block Diagram of Encoder

Extreme Case is Normal

Layering
Resolution Ordering

- Assume we are in block k, and c(i,j) is a coefficient in block k.
- Divide c(i,j) into its sign s(i,j) and m(i,j) its magnitude.
- Quantize to \(v(i,j) = \frac{m(i,j)}{q_k} + 0.5 \) where \(q_k \) is the quantization step for block k.
- Example: \(c(i,j) = -10 \), \(q_k = 3 \).
 - \(s(i,j) = 0 \)
 - \(v(i,j) = \text{floor}(-10/3 + 0.5) = -2 \)

Block Coding

- Assume we are in block k, and c(i,j) is a coefficient in block k.
- Divide c(i,j) into its sign s(i,j) and m(i,j) its magnitude.
- Quantize to \(v(i,j) = \frac{m(i,j)}{q_k} + 0.5 \) where \(q_k \) is the quantization step for block k.
- Example: \(c(i,j) = -10 \), \(q_k = 3 \).
 - \(s(i,j) = 0 \)
 - \(v(i,j) = \text{floor}(-10/3 + 0.5) = -2 \)

Bit Plane Coding of Blocks

- Sub-block significance coding (like group testing)
 - Some sub-blocks are declared insignificant
 - Significant sub-blocks must be coded
- Contexts are defined based on the previous bit-plane significance.
 - Zero coding (ZC) – 8 contexts
 - Run length coding (RLC) – 1 context
 - Sign coding (SC) – 5 contexts
 - Magnitude refinement coding (MR) – 3 contexts
- Block coded in raster order using arithmetic coding

Sub-Block Significance Coding

- Quad-tree organized group testing
- Block divided into 16x16 sub-blocks
- Identify in few bits the sub-blocks that are significant
Quad-Tree Subdivision

Quad-Tree Subdivision Coding

Depth-first code = 1 for significant
0 for insignificant

ZC – Zero Coding

• LH is transposed so that it can be treated the same as HL. (LH)T has similar characteristics to HL.
• Each coefficient has its neighbors in the same subband

ZC Contexts

Examples
RLC – Run Length Coding

• Looks for runs of 4 that are likely to be insignificant

• If all insignificant then code as a single symbol

• Main purpose – to lighten the load on the arithmetic coder.

SC – Sign Coding

\[hs = \begin{cases} 0 & \text{if horizontal neighbors are both insignificant or of opposite sign} \\
1 & \text{if at least one horizontal neighbor is positive} \\
-1 & \text{if at least one horizontal neighbor is negative} \end{cases} \]

\[vs = \begin{cases} 0 & \text{if vertical neighbors are both insignificant or of opposite sign} \\
1 & \text{if at least one vertical neighbor is positive} \\
-1 & \text{if at least one vertical neighbor is negative} \end{cases} \]

MR – Magnitude Refinement

• This is the refinement pass.

• Define \(t = 0 \) if first refinement bit, \(t = 1 \) otherwise.

\[
\begin{array}{c|cc}
\text{label} & h + v \\
0 & 0 & 0 \\
1 & 0 & > 0 \\
2 & 1 & = 0 \\
\end{array}
\]

Bit Allocation

• How do we truncate the encoded blocks to to achieve a desired bit rate and get maximum fidelity

Basic Set Up

• Encoded block \(k \) can be truncated to \(n_k \) bits.

• Total Bit Rate \(\sum n_k \)

• Distortion attributable to block \(k \) is

\[D_k^c = w_k^2 \sum_{(i,j) \in A_k} (c^h(i,j) - c(i,j))^2 \]

where \(w_k \) is the “weight” of the basis vectors for block \(k \) and \(c^h(i,j) \) is the recovered coefficients from \(n_k \) bits of block \(k \).

Bit Allocation as an Optimization Problem

• Input: Given \(m \) embedded codes and a bit rate target \(R \)

• Output: Find truncation values \(n_k, 1 \leq k \leq m \), such that

\[D = \sum_k D_k^c \]

is minimized and

\[\sum_k n_k \leq R \]
Facts about Bit Allocation

- It is an NP-hard problem generally
- There are fast approximate algorithms that work well in practice
 - Lagrange multiplier method
 - Multiple choice knapsack method

Rate-Distortion Curve

<table>
<thead>
<tr>
<th>Rate-Distortion Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Rate-distortion curve

Encoded block

Truncation points

Picture of Bit Allocation

<table>
<thead>
<tr>
<th>Picture of Bit Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Block 1 Block 2 Block m

Pick one point from each curve so that the sum of the x values is bounded by R and the sum of the y values is minimized.

Good approximate algorithms exist because the curves are almost convex.

Notes on EBCOT

- EBCOT is quite complicated with many features.
- JPEG 2000 based on EBCOT but differs to improve compression and decompression time.
- EBCOT has:
 - resolution scalability
 - SNR scalability
 - quantization
 - bit allocation
 - arithmetic coding with context and adaptivity
 - group testing (quad trees)
 - sign and refinement bit contexts
 - lots of engineering

Notes on Wavelet Compression

- Wavelets appear to be excellent for image compression
 - No blocking artifacts
 - Wavelet coding techniques abound and are very effective
- Some of the wavelet coding techniques can apply to block transforms.
- Newest generation of image compressor use wavelets, JPEG 2000.