

Why Wavelet Compression Works

- Wavelet coefficients are transmitted in bit-plane order.
- In most significant bit planes most coefficients are 0 so they can be coded efficiently.
- Only some of the bit planes are transmitted. This is where fidelity is lost when compression is gained.
- Natural progressive transmission

One-Dimensional Average Transform
(2)

CSE 490gz - Lecture 15 - Winter 2004
12

Two Dimensional Average Transform

negative value

18

Wavelet Transforms

- Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters.
- The filters depend only on a constant number of values. (bounded support)
- Preserve energy (norm of the pixels = norm of the coefficients)
- Inverse filters also have bounded support.
- Well-known wavelet transforms
- Haar - like the average but orthogonal to preserve energy. Not used in practice.
- Daubechies $9 / 7$ - biorthogonal (inverse is not the transpose). Most commonly used in practice.

Wavelet Transform Details

- Conversion to reals.
- Convert gray scale to floating point.
- Convert color to $Y \mathrm{U} V$ and then convert each to band to floating point. Compress separately.
- After several levels (3-8) of transform we have a matrix of floating point numbers called the wavelet transformed image (coefficients).

Linear Time Complexity of 2D Wavelet Transform

- Let $\mathrm{n}=$ number of pixels and let b be the number of coefficients in the filters.
- One level of transform takes time - O(bn)
- k levels of transform takes time proportional to $-b n+b n / 4+\ldots+b n / 4^{k-1}<(4 / 3) b n$.
- The wavelet transform is linear time when the filters have constant size.
- The point of wavelets is to use constant size filters unlike many other transforms.

Wavelet Coding

- Normalize the coefficients to be between -1 and 1
- Transmit one bit-plane at a time
- For each bit-plane
- Significance pass: Find the newly significant coefficients, transmit their signs
- Refinement pass: transmit the bits of the known significant coefficients.

Significance \& Refinement Passes

- Code a bit-plane in two passes
- Significance pass
- codes previously insignificant coefficients
also codes sign bit
- Refinement pass
- refines values for previously significant coefficients
- Main idea:
- Significance-pass bits likely to be 0
- Refinement-pass bit are not

Coefficient List
\# value 1 010010010110 2 001011011110 3 000001001001 4 000000010110 5 000100111101 refinement 6 000000100101 7 bits 8 0101101110101 9 00100011111 10 000010100101

-

The Zero-Tree Method

- Invented by Shapiro, 1993, and refined by Said and Pearlman, 1996.

Simplified SPIHT Coding

- Runs in passes - one for each bit plane.
- $C[i, j]$ is the coefficient at index (i,j) and $C[i, j, k]$ is the k-th bit of C[i,j].
- Encoder maintains two data structures.
- S , a list of indices (i, j) such that $\mathrm{C}[\mathrm{i}, \mathrm{j}]$ is declared significant in the current bit plane.
- Z, a stack of zero trees of two types.
- rootless (R)
- root-and-childless (RC)
- The nodes in a zero tree are insignificant in the current bit plane. (ignore root in R and root and children in RC)

SPIHT Zero-Trees

Each zero tree can be identified by its type and the index (i,j) of its root.

Initialization of SPIHT

- The lowest subband indices are put into S .
- If (i,j) in lowest subband then output sign (0 for and 1 for +) of $C[i, j]$ and put (i, j) into S .
- A stack Z of zero trees is formed using the lowest resolution subband indices as roots.
- If (i, j) in the lowest subband is a root of a zero tree of type R if i is odd or (i is even and j is odd).

SPIHT Coding Example: Pass 1,					
Significance Pass (5)					
		12	23	4567	$\begin{aligned} S= & (0,0),(0,1),(1,0),(1,1), \\ & (0,2),(0,3),(1,2),(1,3), \\ & (2,0),(2,1),(3,0),(3,1) \end{aligned}$
0					$Z=(R, 2,0),(R, 2,1),(R, 3,0)$,
1					(R,3,1) ($\mathrm{R}, 1,1$)
2					(R,3,1) (R,1,1)
3					$Z^{\prime}=(R C, 0,1)$
4					
5					$(\mathrm{R}, 2,0)$ is not significant
6				-	output 0
					$S=(0,0),(0,1),(1,0),(1,1)$,
					(0,2), (0,3), (1,2), (1,3),
became significantin S					$(2,0),(2,1),(3,0),(3,1)$
					$Z=(R, 2,1),(R, 3,0),(R, 3,1),(R, 1,1)$
					$Z^{\prime}=(R, 2,0),(R C, 0,1)$

CSE 490gz - Lecture 15 - Winter 2004
\qquad

SPIHT Coding Example: Pass 1,

 Significance Pass (6)
$S=(0,0),(0,1),(1,0),(1,1)$, $(0,2),(0,3),(1,2),(1,3)$, $(2,0),(2,1),(3,0),(3,1)$ $Z=(R, 2,1),(R, 3,0),(R, 3,1),(R, 1,1)$ $Z^{\prime}=(R, 2,0),(R C, 0,1)$
($R, 2,1$) is significant output 1
$S=(0,0),(0,1),(1,0),(1,1)$, $(0,2),(0,3),(1,2),(1,3)$, $(2,0),(2,1),(3,0),(3,1)$, $(2,0),(2,1),(3,0),(3,1)$,
$(4,2),(4,3),(5,2),(5,3)$

\square became significant

 \square in S $(4,2),(4,3),(5,2),(5,3)$tput 1010 for signs of these output 1010 for signs of these
$Z=(R, 3,0),(R, 3,1),(R, 1,1)$ $Z^{\prime}=(R, 2,0),(R C, 0,1)$
CSE 490gz - Lecture 15 - Winter $2004 \quad 56$

SPIHT Coding Example: Pass 1, Significance Pass (7)	
	$s=(0,0),(0,1),(1,0),(1,1)$,
$\stackrel{01234567}{1} \ddagger$	
${ }_{4}^{2}{ }_{4}^{2}$	
	($\mathrm{R}, 3,0$) is insignificant
	output 0 $S=(0,0),(0,1),(1,0),(1,1)$,
\square became siginicant	$(0,2),(0,3),(1,2),(1,3)$,

SPIHT Coding Example: Pass 1, Significance Pass (8)

$(0,0),(0,1,(1,0,(1,1)$, $0,2),(0,3),(1,2),(1,3)$,
$(2,0),(2,1),(3,0),(3,1)$,
$Z=\left(\begin{array}{l}(4,2),(4,3),(5,2),(5,3) \\ Z, 3,0),(R, 3,1),(R, 1,1)\end{array}\right.$
$Z^{\prime}=(R, 2,0),(R C, 0,1)$
$(R, 3,0)$ is insignifican output 0
$(0,0),(0,1),(1,0)$
$(2,0),(2,1),(3,0),(3,1)$,
(4,2), (4,3), (5,2), (5,3)
,3,1), (R,1,1)
CSE 490gz - Lecture 15 - Winter $2004 \quad 57$
$=(0,0),(0,1),(1,0),(1,1)$,
 $(0,2),(0,3),(1,2),(1,3)$, $(2,0),(2,1),(3,0),(3,1)$, $(2,0),(4,3),(5,2),(5,3)$ $Z=(R, 3,1),(R, 1,1)$ $Z^{\prime}=(R, 3,0),(R, 2,0),(R C, 0,1)$
($R, 3,1$) is insignificant output 0
$S=(0,0),(0,1),(1,0),(1,1)$, $(0,2),(0,3),(1,2),(1,3)$, $(2,0),(2,1),(3,0),(3,1)$, $(4,2),(4,3),(5,2),(5,3)$ $Z=(R, 1,1)$

SPIHT Decoding

- The decoder emulates the encoder.
- The decoder maintains exactly the same data structures as the encoder.
- When the decoder has popped the Z stack to examine a zero tree it receives a bit telling it whether the tree is significant. The decoder can then do the right thing
- If it is significant then it does the decomposition.
- If it is not significant then it deduces a number of zeros in the current bit plane.

Notes on SPIHT

- SPIHT was very influential
- People really came to believe that wavelet compression can really be practical (fast and effective).
- To yield the best compression an arithmetic coding step is added to SPIHT
- The improvement is about .5 DB

SPIHT Decoder

k -th iteration

We have list S of significant values and a stack Z of
zero trees from the previous pass or the initialization.
Significance Pass.
while Z is not empty do
$\mathrm{T}:=\operatorname{pop}(\mathrm{Z})$;
input := read;
if input $=1$ then decompose (T)
else push T on Z
$Z:=Z$ '; \{At this point all indices in zero trees in Z are insignificant\} Refinement Pass.
for each (i,j) in S do C[i,j,k] := read.

In decompose the signs of coefficients are input

