Vector Quantization

Vectors
- An a x b block can be considered to be a vector of dimension ab.
 \[\text{block} = (w,x,y,z) \text{ vector} \]
- Nearest means in terms of Euclidian distance or Euclidian squared distance. Both equivalent.
 \[\text{Distance} = \sqrt{(w_w-w_j)^2 + (x_x-x_j)^2 + (y_y-y_j)^2 + (z_z-z_j)^2} \]
 \[\text{Squared Distance} = (w_w-w_j)^2 + (x_x-x_j)^2 + (y_y-y_j)^2 + (z_z-z_j)^2 \]
- Squared distance is easier to calculate.

Vector Quantization Facts
- The image is partitioned into a x b blocks.
- The codebook has n representative a x b blocks called codewords, each with an index.
- Compression with fixed length codes is
 \[\log_2 \frac{ab}{n} \text{ bpp} \]
- Example: \(a = b = 4 \) and \(n = 1,024 \)
 - Compression is \(10/16 = .63 \text{ bpp} \)
 - Compression ratio is \(8 : .63 = 12.8 : 1 \)
- Better compression with entropy coding of indices

Examples
- 4 x 4 blocks: .63 bpp
- 4 x 8 blocks: .31 bpp
- 8 x 8 blocks: .16 bpp
- Codebook size = 1,024

Scalar vs. Vector
- Pixels within a block are correlated.
 - This tends to minimize the number of codewords needed to represent the vectors well.
- More flexibility.
 - Different size blocks
 - Different size codebooks
Encoding and Decoding

- **Encoding:**
 - Scan the a x b blocks of the image. For each block find the nearest codeword in the codebook and output its index.
 - Nearest neighbor search.

- **Decoding:**
 - For each index output the codeword with that index into the destination image.
 - Table lookup.

The Codebook

- Both encoder and decoder must have the same codebook.
- The codebook must be useful for many images and be stored somehow.
- The codebook must be designed properly to be effective.
- Design requires a representative training set.
- These are major drawbacks to VQ.

Codebook Design Problem

- Input: A training set X of vectors of dimension d and a number n. (d = a x b and n is number of codewords)
- Output: n codewords c(0), c(1),...,c(n-1) that minimizes the distortion.
 \[D = \sum_{x \in X} \| x - c(\text{index}(x)) \|^2 \]
 sum of squared distances

where index(x) is the index of the nearest codeword to x.

\[\| [x_0, x_1, \ldots, x_d] \|^2 = x_0^2 + x_1^2 + \cdots + x_{d-1}^2 \]
 squared norm

GLA

- The Generalized Lloyd Algorithm (GLA) extends the Lloyd algorithm for scalars.
 - Also called LBG after inventors Linde, Buzo, Gray (1980)
 - It can be very slow for large training sets.

GLA Example (1)

GLA Algorithm:

Choose a training set X and small error tolerance \(\epsilon > 0 \).
Choose start codewords \(c(0), c(1), \ldots, c(n-1) \).
Compute \(X(j) := \{ x : x \text{ is a vector in } X \text{ closest to } c(j) \} \).
Compute distortion \(D \) for \(c(0), c(1), \ldots, c(n-1) \).
Repeat
 - Compute new codewords
 \[c'(j) := \text{round} \left(\frac{1}{|X(j)|} \sum_{x \in X(j)} x \right) \text{ (centroid)} \]
 - Compute \(X'(j) := \{ x : x \text{ is a vector in } X \text{ closest to } c'(j) \} \).
 - Compute distortion \(D' \) for \(c'(0), c'(1), \ldots, c'(n-1) \).
 - If \(|(D - D')/D| < \epsilon \) then quit
 - else \(c := c'; X := X'; D := D' \).
End(repeat)
GLA Example (8)
C S E 4 9 0 g z - L e c t u r e 1 2 - W i n t e r 2 0 0 4

GLA Example (9)
C S E 4 9 0 g z - L e c t u r e 1 2 - W i n t e r 2 0 0 4

GLA Example (10)
C S E 4 9 0 g z - L e c t u r e 1 2 - W i n t e r 2 0 0 4

C o d e w o r d S p littin g
• It is p o s s ib l e th a t a c h o s e n c o d e w o r d r e p r e s e n t s n o tr a in in g v e c to r s , th a t is , X (j) i s e m p t y .
 – S p litti ng i s a n a lte r n a t iv e c o d e b o o k d e s i g n a l g o r i t h m th a t a v o i d s th i s p r o b l e m .
• B a s ic I d e a
 – S e le c t c o d e w o r d c (j) w i t h t h e g r e a t e s t d i s t o r t i o n .
 – S p l i t i t i n t o t w o c o d e w o r d s t h e n d o t h e G L A .

C o d e w o r d
• I n i t i a l l y c (0) i s c e n t r o i d o f tr a in i n g s e t

C o d e w o r d
• 1 x 2 c o d e w o r d s
 N o t e : c o d e w o r d s d i a g o n a l l y s p r e a d

C o d e b o o k

E x a m p l e o f S p littin g

Example of Splitting
Example of Splitting

- Codeword
- Training vector
- Split $c(1) = c(0) + \epsilon$

Example of Splitting

- Codeword
- Training vector
- Apply GLA

Example of Splitting

- Codeword
- Training vector
- $c(0)$ has max distortion so split it.

Example of Splitting

- Codeword
- Training vector
- $c(2)$ has max distortion so split it.

Example of Splitting

- Codeword
- Training vector
- $c(3)$
GLA Advice

- Time per iteration is dominated by the partitioning step, which is \(m \) nearest neighbor searches where \(m \) is the training set size.
 - Average time per iteration \(O(m \log n) \) assuming \(d \) is small.
- Training set size.
 - Training set should be at least 20 training vectors per code word to get reasonable performance.
 - Too small a training set results in “over training”.
- Number of iterations can be large.

Encoding

- Naive method.
 - For each input block, search the entire codebook to find the closest codeword.
 - Time \(O(T n) \) where \(n \) is the size of the codebook and \(T \) is the number of blocks in the image.
 - Example: \(n = 1024 \), \(T = 256 \times 256 = 65,536 \) (2 x 2 blocks for a 512 x 512 image)
 \[nT = 1024 \times 65536 = 2^{26} = 67 \text{ million distance calculations}. \]
- Faster methods are known for doing “Full Search VQ”. For example, k-d trees.
 - Time \(O(T \log n) \)