Predictive Coding

- The next symbol can be statistically predicted from the past.
 - Code with context
 - Code the difference
 - Move to front, then code

- Goal of prediction
 - The prediction should make the distribution of probabilities of the next symbol as skewed as possible
 - After prediction there is no way to predict more so we are in the first order entropy model

Bad and Good Prediction

- From information theory – The lower the information the fewer bits are needed to code the symbol.
 \[\text{inf}(a) = \log_2 \frac{1}{P(a)} \]
- Examples:
 - \(P(a) = \frac{1024}{1024} \), \(\text{inf}(a) = .000977 \)
 - \(P(a) = \frac{1}{2} \), \(\text{inf}(a) = 1 \)
 - \(P(a) = \frac{1}{1024} \), \(\text{inf}(a) = 10 \)

Entropy

- Entropy is the expected number of bit to code a symbol in the model with \(a_i \) having probability \(P(a_i) \).
 \[H = \sum_{i=1}^{n} P(a_i) \log_2 \left(\frac{1}{P(a_i)} \right) \]
- Good coders should be close to this bound.
 - Arithmetic
 - Huffman
 - Golomb
 - Tunstall

PPM

- Prediction with Partial Matching
 - Cleary and Witten (1984)
 - Tries to find a good context to code the next symbol
 [Table showing contexts and their associated counts]
 - Uses adaptive arithmetic coding for each context

JBIG

- Coder for binary images
 - documents
 - graphics
- Codes in scan line order using context from the same and previous scan lines.
 [Diagram showing context and next bit to be coded]
- Uses adaptive arithmetic coding with context
JBIG Example

\[
\begin{array}{c|cc}
\text{next bit} & 0 & 1 \\
\hline
\text{frequency} & 100 & 10 \\
\end{array}
\]

\[
H = -\frac{100}{110} \log_2(100/110) -\frac{10}{110} \log_2(10/110) = .44
\]

\[
\begin{array}{c|cc}
\text{next bit} & 0 & 1 \\
\hline
\text{frequency} & 15 & 50 \\
\end{array}
\]

\[
H = -\frac{15}{65} \log_2(15/65) -\frac{50}{65} \log_2(50/65) = .78
\]

Issues with Context

- **Context dilution**
 - If there are too many contexts then too few symbols are coded in each context, making them ineffective because of the zero-frequency problem.

- **Context saturation**
 - If there are too few contexts then the contexts might not be good as having more contexts.

- **Wrong context**
 - Again poor predictors.

Prediction by Differencing

- **Used for Numerical Data**
- **Example:** 2 3 4 5 6 7 8 7 6 5 4 3 2

 \[
 \begin{array}{c|c|c|c|c|c}
 \text{next bit} & 0 & 1 & 2 & 3 & 4 \\
 \hline
 \text{frequency} & 10 & 10 & 10 & 10 & 10 \\
 \end{array}
 \]

- **Transform to 2 1 1 1 1 1 1 1 1 1 1**
 - much lower first-order entropy

General Differencing

- **Let** \(x_1, x_2, \ldots, x_n \) **be some numerical data that is correlated, that is** \(x_i \) **is near** \(x_{i+1} \)
- **Better compression can result from coding**
 \[x_1, x_2 - x_1, x_3 - x_2, \ldots, x_i - x_{i-1} \]
- **This idea is used in**
 - signal coding
 - audio coding
 - video coding
- **There are fancier prediction methods based on linear combinations of previous data, but these may require training.**

Move to Front Coding

- **Non-numerical data**
- The data have a relatively small working set that changes over the sequence.
- **Example:** \(a \ b \ b \ a \ b \ c \ b \ b \ c \ c \ c \ b \ c \ b \ c \ b \)
- **Move to Front algorithm**
 - Symbols are kept in a list indexed 0 to \(m-1 \)
 - To code a symbol output its index and move the symbol to the front of the list

Example

- **Example:** \(a \ b \ b \ a \ b \ c \ b \ b \ c \ c \ c \ b \ c \ b \ b \)

 \[
 \begin{array}{c|c|c|c}
 \text{next bit} & 0 & 1 & 2 \\
 \hline
 \text{frequency} & 1 & 2 & 3 \\
 \end{array}
 \]

- **Transform to 0 1 2 3**
 - \(a \ b \ c \ d \)
Example
- Example: \(a b a b a b c b b b c b c b c b c b c \)

 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 a & b & c & d \\
 \downarrow \\
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \end{array}
 \]

Example
- Example: \(a b a b a b c b b b c b c b c b c b c \)

 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \downarrow \\
 0 & 1 & 2 & 3 \\
 a & b & c & d \\
 \end{array}
 \]

Example
- Example: \(a b a b a b c b b b c b c b c b c b c \)

 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 a & b & c & d \\
 \downarrow \\
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \end{array}
 \]

Example
- Example: \(a b a b a b c b b b c b c b c b c b c \)

 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 a & b & c & d \\
 \downarrow \\
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \end{array}
 \]
Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c} \)
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \downarrow \\
 0 & 1 & 2 & 3 \\
 c & b & a & d \\
 \end{array}
 \]

Example
- Example: \(\text{a b a b a b c b b c c c b c b c c b c b c c} \)
 \[
 \begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 0 & 1 & 1 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 3 & 1 & 2 & 0 \\
 c & b & d & a \\
 \end{array}
 \]

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Example
- Example: \(\text{a b a b a b c b c c b c b c c b c b c c b c b c c} \)

Burrows-Wheeler Transform
- Burrows-Wheeler, 1994
- BW Transform creates a representation of the data which has a small working set.
- The transformed data is compressed with move to front compression.
- The decoder is quite different from the encoder.
- The algorithm requires processing the entire string at once (it is not on-line).
- It is a remarkably good compression method.

Encoding Example
- abracadabra
 1. Create all cyclic shifts of the string.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>abracadabra</td>
<td>bracadabra</td>
<td>cabradabra</td>
<td>dbraabrac</td>
<td>erebradba</td>
<td>fadbabrca</td>
<td>gcbadraac</td>
<td>haidbraca</td>
<td>ibjadrac</td>
<td>kcaradbac</td>
<td>lcaabradbac</td>
</tr>
</tbody>
</table>
Encoding Example

2. Sort the strings alphabetically into array A

0	abracadabra
1	abracadabra
2	abracadabra
3	abracadabra
4	abracadabra
5	abracadabra
6	abracadabra
7	abracadabra
8	abracadabra
9	abracadabra

| 10 | abracadabra |

Encoding Example

3. L = the last column

0	abracadabra
1	abracadabra
2	abracadabra
3	abracadabra
4	abracadabra
5	abracadabra
6	abracadabra
7	abracadabra
8	abracadabra
9	abracadabra

| 10 | abracadabra |

Encoding Example

4. Transmit X the index of the input in A and L (using move to front coding).

0	abracadabra
1	abracadabra
2	abracadabra
3	abracadabra
4	abracadabra
5	abracadabra
6	abracadabra
7	abracadabra
8	abracadabra
9	abracadabra

| 10 | abracadabra |

Why BW Works

- Ignore decoding for the moment.
- The prefix of each shifted string is a context for the last symbol.
 - The last symbol appears just before the prefix in the original.
- By sorting similar contexts are adjacent.
 - This means that the predicted last symbols are similar.

Decoding Example

- We first decode assuming some information. We then show how compute the information.
- Let A^* be A shifted by 1

0	abracadabra
1	abracadabra
2	abracadabra
3	abracadabra
4	abracadabra
5	abracadabra
6	abracadabra
7	abracadabra
8	abracadabra
9	abracadabra

| 10 | abracadabra |

Decoding Example

- Assume we know the mapping $T[i]$ is the index in A^* of the string i in A.
- $T = [2 5 6 7 8 9 10 4 1 0 3]$

0	abracadabra
1	abracadabra
2	abracadabra
3	abracadabra
4	abracadabra
5	abracadabra
6	abracadabra
7	abracadabra
8	abracadabra
9	abracadabra

| 10 | abracadabra |
Decoding Example

• Let F be the first column of A, it is just L, sorted.

$$F = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & a & a & a & b & b & b & b & c & c & c \\ \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3 \\ \end{bmatrix}$$

• Follow the pointers in T in F to recover the input starting with X.

Decoding Example

$$F = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & a & a & a & b & b & c & d & r & r \\ \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3 \\ \end{bmatrix}$$

• Why does this work?

Decoding Example

• How do we compute F and T from L and X?

F is just L sorted

$$F = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & a & a & a & b & b & c & d & r & r \\ \end{bmatrix}$$

L = r d a r c a a a a b b

Note that L is the first column of A^* and A^* is in the same order as A.

If i is the k-th x in F then $T[i]$ is the k-th x in L.

Decoding Example

• Let F be the first column of A, it is just L, sorted.

$$F = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & a & a & a & b & b & b & b & c & c & c \\ \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3 \\ \end{bmatrix}$$

• Follow the pointers in T in F to recover the input starting with X.

Decoding Example

$$F = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & a & a & a & b & b & c & d & r & r \\ \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3 \\ \end{bmatrix}$$

ab
Decoding Example

\[
\begin{align*}
F &= \text{a a a a b b c d r r} \\
L &= \text{r d a r c a a a a b b} \\
T &= \text{0 1 2 3 4 5 6 7 8 9 10} \\
&= \text{2 5 6 7 8 9 10}
\end{align*}
\]

Notes on BW

- Alphabetic sorting does not need the entire cyclic shifted inputs.
 - Sort the indices of the string
 - Most significant symbols first radix sort works
- There are high quality practical implementations
 - Bzip
 - Bzip2 (seems to be w/o patents)
Encoding Exercise

Encode the string \texttt{abababababababab} = (ab)^9
1. Find L and X
2. Do move-to-front coding of L.
3. Estimate the length of the code using first order entropy.

Decoding Exercise

Decode L = baaaba, X = 6
1. First Compute F and T
2. Use those to decode.