CSE 490 GZ
Introduction to Data Compression
Winter 2004

Course Policies
Introduction to Data Compression
Entropy
Prefix Codes

Instructors

• Instructor
 – Richard Ladner
 – ladner@cs.washington.edu
 – 206 543-9347
 – office hours: Tue and Thurs 11 to noon
• TA
 – Neva Cherniavsky
 – nchernia@cs.washington.edu
 – office hours: Mon and Wed at 9:30 to 10:30

Prerequisites

• CSE 142, 143
• CSE 326 or CSE 373
• Reason for the prerequisites:
 – Data compression has many algorithms
 – Some of the algorithms require complex data structures

Resources

• Text Book
• 490g Course Web Page
 – http://www.cs.washington.edu/490g
• Papers and Sections from Books
• E-mail list
 – For dissemination of information by instructor and TA
 – Please sign up

Engagement by Students

• Weekly Assignments
 – Understand compression methodology
 – Due in class on Fridays (except midterm Friday)
 – No late assignments accepted except with prior approval
• Programming Projects
 – Bi-level arithmetic coder and decoder
 – Image coder and decoder
 – Build code and experiment

Final Exam and Grading

• Final Exam - 8:30-10:20 a.m. Tuesday, March 16, 2004
• Midterm Exam – Friday, February 6, 2004
• Percentages
 – Weekly assignments (25%)
 – Midterm exam (15%)
 – Projects (25%)
 – Final exam (35%)
Basic Data Compression Concepts

<table>
<thead>
<tr>
<th></th>
<th>original</th>
<th>compressed</th>
<th>decompressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder</td>
<td></td>
<td>Y</td>
<td>Decoder</td>
</tr>
</tbody>
</table>

- **Lossless compression** $x = \hat{x}$
 - Also called entropy coding, reversible coding.
- **Lossy compression** $x \neq \hat{x}$
 - Also called irreversible coding.
- **Compression ratio** $\frac{|x|}{|\hat{x}|}$
 - $|x|$ is number of bits in x.

Why Compress

- **Conserve storage space**
- **Reduce time for transmission**
 - Faster to encode, send, then decode than to send the original
- **Progressive transmission**
 - Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- **Reduce computation**
 - Use less data to achieve an approximate answer

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>z</th>
</tr>
</thead>
</table>
and | the | with | mother |
| th | ch | gh |

Braille Example

Clear text:
Call me Ishmael. Some years ago -- never mind how long precisely -- having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world. (238 characters)

Grade 2 Braille in ASCII.
```
call me ,i%mael4 ,"s ye$-$s ago -- n`e m9d h\ t\g
precisely -- hav\ \ / or no m`oy 9 my purse1 \& no?+
\picul$+$6 9$fie me on %io\e1 \& 57$s$ \$ ,w4 sail
ab a ll \& see ! watly `p (1 \_\w4 (203 characters)
```

Compression ratio = 238/203 = 1.17

Lossless Compression

- Data is not lost - the original is really needed.
 - text compression
 - compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- **Statistical Techniques**
 - Huffman coding
 - Arithmetic coding
 - Golomb coding
- **Dictionary techniques**
 - LZW, LZ77
 - Sequitur
 - Burrows-Wheeler Method
- Standards - Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

Lossy Compression

- Data is lost, but not too much.
 - audio
 - video
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
 - Vector Quantization
 - Wavelets
 - Block transforms
 - Standards - JPEG, MPEG
Why is Data Compression Possible

- Most data from nature has **redundancy**
 - There is more data than the actual information contained in the data.
 - Squeezing out the excess data amounts to compression.
 - However, unsqueezing is necessary to be able to figure out what the data means.
- **Information theory** is needed to understand the limits of compression and give clues on how to compress well.

What is Information

- Analog data
 - Also called continuous data
 - Represented by real numbers (or complex numbers)
- Digital data
 - Finite set of symbols \(\{a_1, a_2, \ldots, a_n\} \)
 - All data represented as sequences (strings) in the symbol set.
 - Example: \(\{a, b, c, d, r\} \) abracadabra
 - Digital data can be an approximation to analog data

Symbols

- Roman alphabet plus punctuation
- ASCII - 256 symbols
- Binary - \(\{0, 1\} \)
 - 0 and 1 are called bits
 - All digital information can be represented efficiently in binary
 - \((a, b, c, d) \) fixed length representation

<table>
<thead>
<tr>
<th>symbol</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
- 2 bits per symbol

Exercise - How Many Bits Per Symbol?

- Suppose we have \(n \) symbols. How many bits (as a function of \(n \)) are needed in to represent a symbol in binary?
 - First try \(n \) a power of 2.

Discussion: Non-Powers of Two

- Can we do better than a fixed length representation for non-powers of two?

Information Theory

- Developed by Shannon in the 1940’s and 50’s
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
 - It is much more likely to receive an “e” than a “z”.
 - In some sense “z” has more information than “e”.
First-order Information

- Suppose we are given symbols \{a_1, a_2, ..., a_m\}.
- \(P(a_i) \) = probability of symbol \(a_i \) occurring in the absence of any other information.
- \(P(a_1) + P(a_2) + ... + P(a_m) = 1 \)
- \(\text{inf}(a_i) = \log_2(1/P(a_i)) \) bits is the information of \(a_i \) in bits.

Example

- \{a, b, c\} with \(P(a) = 1/8, P(b) = 1/4, P(c) = 5/8 \)
- \(\text{inf}(a) = \log_2(8) = 3 \)
- \(\text{inf}(b) = \log_2(4) = 2 \)
- \(\text{inf}(c) = \log_2(8/5) = 0.678 \)
- Receiving an “a” has more information than receiving a “b” or “c”.

First Order Entropy

- The first order entropy is defined for a probability distribution over symbols \(\{a_1, a_2, ..., a_m\} \).
- \(H = \sum_{i=1}^{m} P(a_i) \log_2 \left(\frac{1}{P(a_i)} \right) \)
- \(H \) is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- \(H \) is the Shannon lower bound on the average number of bits to code a symbol in this “source model”.
- Stronger models of entropy include context.

Entropy Examples

- \{a, b, c\} with a 1/8, b 1/4, c 5/8.
 - \(H = 1/8 \times 3 + 1/4 \times 2 + 5/8 \times 0.678 = 1.3 \text{ bits/symbol} \)
- \{a, b, c\} with a 1/3, b 1/3, c 1/3. (worst case)
 - \(H = 3 \times (1/3) \times \log_2(3) = 1.6 \text{ bits/symbol} \)
- Note that a standard code takes 2 bits per symbol

An Extreme Case

- \{a, b, c\} with a 1, b 0, c 0
 - \(H = ? \)

Entropy Curve

- Suppose we have two symbols with probabilities \(x \) and 1-x, respectively.
A Simple Prefix Code

- \{a, b, c\} with a 1/8, b 1/4, c 5/8.

A prefix code is defined by a binary tree

Prefix code property
- no output is a prefix of another

Binary Tree Terminology

1. Each node, except the root, has a unique parent.
2. Each internal node has exactly two children.

Decoding a Prefix Code

repeat
start at root of tree
repeat
if read bit = 1 then go right
else go left
until node is a leaf
report leaf
until end of the code

Decoding a Prefix Code

1100011100

c
Decoding a Prefix Code

11000111100
cc

Decoding a Prefix Code

11000111100
cc

Decoding a Prefix Code

11000111100
cca

Decoding a Prefix Code

11000111100
cca
Decoding a Prefix Code

```
1100011100
ccab
```

Exercise Encode/Decode

- Player 1: Encode a symbol string
- Player 2: Decode the string
- Check for equality

How Good is the Code

```
bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2  bps
```

Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols
 [a,b,r,c,d] which compresses this string the most.

Design a Prefix Code 2

- Suppose we have n symbols each with probability 1/n. Design a prefix code with
 minimum average bit rate.
- Consider n = 2,3,4,5,6 first.