VQ Encoding is Nearest Neighbor Search

- Given an input vector, find the closest codeword in the codebook and output its index.
- Closest is measured in squared Euclidian distance.
- For two vectors \((w_1, x_1, y_1, z_1)\) and \((w_2, x_2, y_2, z_2)\).
 \[
 \text{Squared Distance} = (w_1 - w_2)^2 + (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2
 \]

k-d Tree

- Jon Bentley, 1975
- Tree used to store spatial data.
 - Nearest neighbor search.
 - Range queries.
 - Fast look-up
- k-d tree are guaranteed \(\log_2 n\) depth where \(n\) is the number of points in the set.
 - Traditionally, k-d trees store points in d-dimensional space which are equivalent to vectors in d-dimensional space.

k-d Tree Construction

- If there is just one point, form a leaf with that point.
- Otherwise, divide the points in half by a line perpendicular to one of the axes.
- Recursively construct k-d trees for the two sets of points.
- Division strategies
 - divide points perpendicular to the axis with widest spread.
 - divide in a round-robin fashion.
k-d Tree Construction (3)

k-d Tree Construction (4)

k-d Tree Construction (5)

k-d Tree Construction (6)

k-d Tree Construction (7)

k-d Tree Construction (8)
k-d Tree Construction Complexity

- First sort the points in each dimension.
 - $O(dn \log n)$ time and dn storage.
 - These are stored in $A[1..d,1..n]$
- Finding the widest spread and equally divide into two subsets can be done in $O(dn)$ time.
- Constructing the k-d tree can be done in $O(dn \log n)$ and dn storage.
Node Structure for k-d Trees

- A node has 5 fields
 - axis (splitting axis)
 - value (splitting value)
 - left (left subtree)
 - right (right subtree)
 - point (holds a point if left and right children are null)

k-d Tree Nearest Neighbor Search

\[\text{NNS}(q, \text{root}, p, \infty) \]

\[\text{NNS}(q, n, \text{root}, p, w) \]

\[w' := ||q - n\text{.point}||; \]

\[\text{if } w' < w \text{ then } w := w'; p := n\text{.point}; \]

\[\text{else if } w = \infty \text{ then} \]

\[\text{if } q(n\text{.axis}) < n\text{.value} \text{ then } \]

\[\text{NNS}(q, n\text{.left}, p, w); \]

\[\text{else if } q(n\text{.axis}) + w > n\text{.value} \text{ then } \]

\[\text{NNS}(q, n\text{.right}, p, w); \]

\[\text{else (w is finite)} \]

\[\text{if } q(n\text{.axis}) - w < n\text{.value} \text{ then } \]

\[\text{NNS}(q, n\text{.left}, p, w); \]

\[\text{else} \]

\[\text{if } q(n\text{.axis}) + w > n\text{.value} \text{ then } \]

\[\text{NNS}(q, n\text{.right}, p, w); \]

- Explanation
 - \[q(n\text{.axis}) - w \leq n\text{.value} \] means the circle overlap the left subtree.
 - \[q(n\text{.axis}) + w > n\text{.value} \] means the circle overlap the right subtree.

k-d Tree NNS (1)

k-d Tree NNS (2)

k-d Tree NNS (3)
Notes on k-d Tree NNS

- Has been shown to run in $O(\log n)$ average time per search in a reasonable model. (Assume d a constant)
- For VQ it appears that $O(\log n)$ is correct.
- Storage for the k-d tree is $O(n)$.
- Preprocessing time is $O(n \log n)$ assuming d is a constant.

Alternatives

- Orchard’s Algorithm (1991)
 - Uses $O(n^2)$ storage but is very fast
- Annulus Algorithm
 - Similar to Orchard but uses $O(n)$ storage. Does many more distance calculations.
- PCP Principal Component Partitioning
 - Zatloukal, Johnson, Ladner (1999)
 - Similar to k-d trees
 - Also very fast

Principal Component Partition

PCP Tree vs. k-d tree

Comparison in Time per Search

Notes on VQ

- Works well in some applications.
 - Requires training
- Has some interesting algorithms.
 - Codebook design
 - Nearest neighbor search
- Variable length codes for VQ.
 - PTSVQ - pruned tree structured VQ (Chou, Lookabaugh and Gray, 1989)
 - ECVQ - entropy constrained VQ (Chou, Lookabaugh and Gray, 1989)