Predictive Coding

- The next symbol can be statistically predicted from the past.
 - Code with context
 - Code the difference
 - Move to front, then code
- Goal of prediction
 - The prediction should make the probability of the next symbol high as possible
 - After prediction there is nothing left to know except the probabilities

Bad and Good Prediction

- From information theory – The lower the information the fewer bits are needed to code the symbol.
 \[\text{inf}(a) = \log_2 \left(\frac{1}{P(a)} \right) \]
- Examples:
 - \(P(a) = \frac{1024}{1024}, \text{inf}(a) = .000977 \)
 - \(P(a) = \frac{1}{2}, \text{inf}(a) = 1 \)
 - \(P(a) = \frac{1}{1024}, \text{inf}(a) = 10 \)

Entropy

- Entropy is the expected number of bit to code a symbol in the model with a, having probability \(P(a) \).
 \[H = \sum_{a=1}^{m} P(a) \log_2 \left(\frac{1}{P(a)} \right) \]
- Good coders should be close to this bound.
 - Arithmetic
 - Huffman
 - Golomb
 - Tunstall

PPM

- Prediction with Partial Matching
 - Cleary and Witten (1984)
 - Tries to find a good context to code the next symbol

<table>
<thead>
<tr>
<th>context</th>
<th>a...e...i...f...s...y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the</td>
</tr>
<tr>
<td></td>
<td>h e</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
<tr>
<td><nil></td>
<td>50 70 30 35 40 13</td>
</tr>
</tbody>
</table>

- Uses adaptive arithmetic coding for each context

JBIG

- Coder for binary images
 - documents
 - graphics
- Codes in scan line order using context from the same and previous scan lines.

- Uses adaptive arithmetic coding with context
Issues with Context

- **Context dilution**
 - If there are too many contexts then too few symbols are coded in each context, making them ineffective because of the zero-frequency problem.
- **Context saturation**
 - If there are too few contexts then the contexts might not be good as having more contexts.
- **Wrong context**
 - Again poor predictors.

General Differencing

- Let $x_1, x_2, ..., x_n$ be some numerical data that is correlated, that is x_i is near x_{i+1}
- Better compression can result from coding $x_1, x_2 - x_1, x_3 - x_2, ..., x_n - x_{n-1}$
- This idea is used in
 - Signal coding
 - Audio coding
 - Video coding
- There are fancier prediction methods based on linear combinations of previous data, but these can require training.

Move to Front Coding

- Non-numerical data
- The data have a relatively small working set that changes over the sequence.
- Example: `ababacbbccbdcc`
- Move to Front algorithm
 - Symbols are kept in a list indexed 0 to m-1
 - To code a symbol output its index and move the symbol to the front of the list

Example

```
0 1 2 3
a b c d
```
Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 a b c d
 ↓
 0 1 2 3
 b a c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 b a c d
 ↓
 0 1 2 3
 a b c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 a b c d
 ↓
 0 1 2 3
 b a c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 b a c d
 ↓
 0 1 2 3
 a b c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 b a c d
 ↓
 0 1 2 3
 b a c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 b a c d
 ↓
 0 1 2 3
 b a c d

Example

- Example: `ababaabccbbccccbdc`

 0 1 2 3
 b a c d
 ↓
 0 1 2 3
 b a c d
Example

• Example: \texttt{abababccbccbccbd}

 \begin{tabular}{cccc}
 0 & 1 & 2 & 3 \\
 b & a & c & d \\
 \\
 0 & 1 & 2 & 3 \\
 c & b & a & d \\
 \end{tabular}

Example

• Example: \texttt{abababccbccbccbd}

 \begin{tabular}{cccc}
 0 & 1 & 2 & 3 \\
 c & b & d & a \\
 \end{tabular}

Example

• Example: \texttt{abababccbccbccbd}

 Frequencies of \{a, b, c, d\}
 a b c d
 4 7 8 1

 Frequencies of \{0, 1, 2, 3\}
 0 1 2 3
 8 9 2 1

Extreme Example

Input:
\texttt{aaaaaaaaabbbbbbbbbcccccddddd}

Output
\texttt{0000000000100000000200000000030000000}

Frequencies of \{a, b, c, d\}
\begin{tabular}{cccc}
 a & b & c & d \\
 10 & 10 & 10 & 10 \\
\end{tabular}

Frequencies of \{0, 1, 2, 3\}
\begin{tabular}{cccc}
 0 & 1 & 2 & 3 \\
 37 & 11 & 11 & 11 \\
\end{tabular}

Burrows-Wheeler Transform

• Burrows-Wheeler, 1994
• BW Transform creates a representation of the data which has a small working set.
• The transformed data is compressed with move to front compression.
• The decoder is quite different from the encoder.
• The algorithm requires processing the entire string at once (it is not on-line).
• It is a remarkably good compression method.

Encoding Example

• abracadabra
 1. Create all cyclic shifts of the string.
 \begin{tabular}{c}
 0 & abracadabra \\
 1 & bracadabra \\
 2 & cadabraabr \\
 3 & acabradabra \\
 4 & cbracadabra \\
 5 & dbracadabra \\
 6 & ebbradabra \\
 7 & fbracadabra \\
 8 & gbradabra \\
 9 & hbradabra \\
 10 & iabracadabra \\
\end{tabular}
Encoding Example

2. Sort the strings alphabetically into array A

\[
\begin{array}{c|c}
0 & abracadabra \\
1 & bracadabra \\
2 & racadabra \\
3 & cadabra \\
4 & adaabra \\
5 & draabra \\
6 & raabra \\
7 & abaabra \\
8 & aabara \\
9 & arcabra \\
10 & raabra \\
\end{array}
\]

A

A_

Encoding Example

3. L = the last column

\[
\begin{array}{c|c}
0 & abracadabra \\
1 & abracadabra \\
2 & abracadabra \\
3 & abracadabra \\
4 & abracadabra \\
5 & abracadabra \\
6 & abracadabra \\
7 & abracadabra \\
8 & abracadabra \\
9 & abracadabra \\
10 & abracadabra \\
\end{array}
\]

L = radacaabb

X = 2

Why BW Works

- Ignore decoding for the moment.
- The prefix of each shifted string is a context for the last symbol.
 - The last symbol appears just before the prefix in the original.
- By sorting similar contexts are adjacent.
 - This means that the predicted last symbols are similar.

Decoding Example

- We first decode assuming some information. We then show how compute the information.
- Let A' be A shifted by 1

\[
\begin{array}{c|c}
0 & abracadabra \\
1 & abracadabra \\
2 & abracadabra \\
3 & abracadabra \\
4 & abracadabra \\
5 & abracadabra \\
6 & abracadabra \\
7 & abracadabra \\
8 & abracadabra \\
9 & abracadabra \\
10 & abracadabra \\
\end{array}
\]

A

A'

Decoding Example

- Assume we know the mapping T[j] is the index in A of the string i in A.
- T = [2 5 6 7 8 9 10 4 1 0 3]
Decoding Example

• Let F be the first column of A, it is just L, sorted.
 $F = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 a & a & a & a & b & b & c & d & r & r
 \end{array}$
 $T = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3
 \end{array}$

• Follow the pointers in T in F to recover the input starting with X.

Decoding Example

• Why does this work?
 • The first symbol of $A[T[i]]$ is the second symbol of $A'[T[i]]$ is the second symbol of $A[i]$ because $A'[T[i]] = A[i]$.

Decoding Example

• How do we compute T from L and X?
 0 1 2 3 4 5 6 7 8 9 10
 a a a a a b b c d r r
 $F = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 a & a & a & a & b & b & c & d & r & r
 \end{array}$
 2 5 6 7 8 9 10 4 1 0 3
 $T = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3
 \end{array}$
 ab
 a

Decoding Example

• How do we compute T from L and X?
 0 1 2 3 4 5 6 7 8 9 10
 a a a a a b b c d r r
 $F = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 a & a & a & a & b & b & c & d & r & r
 \end{array}$
 2 5 6 7 8 9 10 4 1 0 3
 $T = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 2 & 5 & 6 & 7 & 8 & 9 & 10 & 4 & 1 & 0 & 3
 \end{array}$
 abr
 abr
 a

Decoding Example

• How do we compute T from L and X?
 0 1 2 3 4 5 6 7 8 9 10
 a a a a a b b c d r r
 $F = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 a & a & a & a & b & b & c & d & r & r
 \end{array}$
 2 5 6 7 8 9 10 4 1 0 3
 $L = r d a r c a a a a b b$
 Note that L is the first column of A' and A' is in the same order as A.

 If i is the k-th x in F then $T[i]$ is the k-th x in L.

Decoding Example

• How do we compute T from L and X?
 0 1 2 3 4 5 6 7 8 9 10
 a a a a a b b c d r r
 $F = \begin{array}{cccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 a & a & a & a & b & b & c & d & r & r
 \end{array}$
 2 5 6 7 8 9 10 4 1 0 3
 $L = r d a r c a a a a b b$
 Note that L is the first column of A' and A' is in the same order as A.

 If i is the k-th x in F then $T[i]$ is the k-th x in L.

Decoding Example

0 1 2 3 4 5 6 7 8 9 10
F = a a a a a b b c c d d r r
L = r d a r c a a a a a b b
T = 0 1 2 3 4 5 6 7 8 9 10
2 5 6 7 8

Decoding Example

0 1 2 3 4 5 6 7 8 9 10
F = a a a a a b b c c d d r r
L = r d a r c a a a a a b b
T = 0 1 2 3 4 5 6 7 8 9 10
2 5 6 7 8 9 10

Decoding Example

0 1 2 3 4 5 6 7 8 9 10
F = a a a a a b b c c d d r r
L = r d a r c a a a a a b b
T = 0 1 2 3 4 5 6 7 8 9 10
2 5 6 7 8 9 10
4

Decoding Example

0 1 2 3 4 5 6 7 8 9 10
F = a a a a a b b c c d d r r
L = r d a r c a a a a a b b
T = 0 1 2 3 4 5 6 7 8 9 10
2 5 6 7 8 9 10
4 1

Decoding Example

0 1 2 3 4 5 6 7 8 9 10
F = a a a a a b b c c d d r r
L = r d a r c a a a a a b b
T = 0 1 2 3 4 5 6 7 8 9 10
2 5 6 7 8 9 10
4 1 0 3

Notes on BW

• Alphabetic sorting does not need the entire cyclic shifted inputs. You just have to look at long enough prefixes.
 – A bucket sort will work here.
• There are high quality practical implementations
 – Bzip
 – Bzip2 (seems to be public domain)