Scaling

- By scaling we can keep L and R in a reasonable range of values so that $W = R - L$ does not underflow.
- The code can be produced progressively, not at the end.
- Complicates decoding some.

Scaling Principle

- Lower half
 - If $[L, R)$ is contained in $[0, .5)$ then
 - $L := 2L$; $R := 2R$
 - Output 0, followed by C 1's
 - $C := 0$

- Upper half
 - If $[L, R)$ is contained in $[.5, 1)$ then
 - $L := 2L - 1$; $R := 2R - 1$
 - Output 1, followed by C 0's
 - $C := 0$

- Middle Half
 - If $[L, R)$ is contained in $[.25, .75)$ then
 - $L := 2L - .5$; $R := 2R - .5$
 - $C := C + 1$

Example

- baa

 + $L = 1/3$; $R = 3/3$
 + $C = 0$

+ $L = 3/9$; $R = 11/18$
 + $C = 1$

 Scale middle half
Example

- baa

\[C = 1 \]
\[L = \frac{3}{18} R = \frac{11}{18} \]
\[L = \frac{9}{54} R = \frac{17}{54} \]

Scale lower half

Example

- baa 01

\[C = 0 \]
\[L = \frac{9}{54} R = \frac{17}{54} \]
\[L = \frac{18}{54} R = \frac{34}{54} \]

In end \(L < \frac{1}{2} < R \), choose tag to be 1/2

Example

- baa 011

In end \(L < \frac{1}{2} < R \), choose tag to be 1/2

\[C = 0 \]
\[L = \frac{9}{54} R = \frac{17}{54} \]
\[L = \frac{18}{54} R = \frac{34}{54} \]

Context

- Consider 1 symbol context.
 - Example: 3 contexts.

Integer Implementation

- m bit integers
 - Represent 0 with 000...0 (m times)
 - Represent 1 with 111...1 (m times)
- Probabilities represented by frequencies
 - \(n_i \) is the number of times that symbol \(a_i \) occurs
 - \(C_i = n_1 + n_2 + ... + n_{i-1} \)
 - \(N = n_1 + n_2 + ... + n_m \)

Coding the \(i \)-th symbol using integer calculations. Must use scaling!

Example with Scaling

- acc

Code = 0101

Equally Likely model
Arithmetic Coding with Context

- Maintain the probabilities for each context.
- For the first symbol use the equal probability model.
- For each successive symbol use the model for the previous symbol.

Adaptation

- Simple solution – Equally Probable Model.
 - Initially all symbols have frequency 1.
 - After symbol x is coded, increment its frequency by 1.
 - Use the new model for coding the next symbol.
- Example in alphabet a,b,c,d

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>b</td>
<td>1 1 2 2 2</td>
</tr>
<tr>
<td>c</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>d</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

 After aabaac is encoded

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4 5</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

Zero Frequency Problem

- How do we weight symbols that have not occurred yet.
 - Equal weights? Not so good with many symbols
 - Escape symbol, but what should its weight be?
 - When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)

Symbol	Frequency
a	0 1 2 3 4
b	0 0 1 1 1
c	0 0 0 0 0
d	0 0 0 0 0
<esc>	1 1 1 1 1

 After aabaac is encoded

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3/7</td>
</tr>
<tr>
<td>b</td>
<td>1/7</td>
</tr>
<tr>
<td>c</td>
<td>1/7</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td><esc></td>
<td>1/7</td>
</tr>
</tbody>
</table>

PPM

- Prediction with Partial Matching
 - Cleary and Witten (1984)
- State of the art arithmetic coder
 - Arbitrary order context
 - The context chosen is one that does a good prediction given the past
 - Adaptive
- Example
 - Context “the” does not predict the next symbol “a” well. Move to the context “he” which does.

Arithmetic vs. Huffman

- Both compress very well. For m symbol grouping.
 - Huffman is within 1/m of entropy.
 - Arithmetic is within 2/m of entropy.
- Context
 - Huffman needs a tree for every context.
 - Arithmetic needs a small table of frequencies for every context.
- Adaptation
 - Huffman has an elaborate adaptive algorithm.
 - Arithmetic has a simple adaptive mechanism.
- Bottom Line – Arithmetic is more flexible than Huffman.