

Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
- aabddcaa = 16 bits
$-00100111110100=14$ bits
- Prefix code ensures unique decodability.
- 00100111110100

- Example: a $1 / 2$, b $1 / 8$, c $1 / 8$, d $1 / 4$

$$
\begin{gathered}
C(T)=1 \times 1 / 2+3 \times 1 / 8+3 \times 1 / 8+2 \times 1 / 4=1.75 \\
a \quad b \quad c \quad d
\end{gathered}
$$

CSE 490gz - Lecture 2 - Winter 2002

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
- Each symbol is mapped to a binary string.
- More frequent symbols have shorter codes.
- No code is a prefix of another.
- Example:
 2

Cost of a Huffman Tree

- Let $p_{1}, p_{2}, \ldots, p_{m}$ be the probabilities for the symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Define the cost of the Huffman tree T to be

$$
\mathrm{C}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}
$$

where r_{i} is the length of the path from the root to a_{i}.

- $C(T)$ is the expected length of the code of a symbol coded by the tree $T . C(T)$ is the bit rate of the code.

Huffman Tree

- Input: Probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ for symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$
\mathrm{HC}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{m} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \quad \text { bit rate }
$$

where r_{i} is the length of the path from the root to a_{i}. This is the Huffman tree or Huffman code

CSE 490gz - Lecture 2 - Winter 200
6

Optimality Principle 1

- In an Huffman tree a lowest probability symbol has maximum distance from the root.
- If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$$
C\left(T^{\prime}\right)=C(T)+h p-h q+k q-k p=C(T)-(h-k)(q-p)<C(T)
$$

$$
\text { CSE 490gz - Lecture } 2 \text { - Winter } 2002
$$

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
- The resulting tree is optimal for the new symbol set.

Optimality Principle 2

- The second lowest probability is a sibling of the the smallest in some Huffman tree.
- If not, we can move it there not raising the cost.

Optimality Principle 3 (cont')

- If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T"' for the original alphabet.

$\mathrm{C}\left(\mathrm{T}^{\prime \prime \prime}\right)=\mathrm{C}\left(\mathrm{T}^{\prime \prime}\right)+\mathrm{p}+\mathrm{q}<\mathrm{C}\left(\mathrm{T}^{\prime}\right)+\mathrm{p}+\mathrm{q}=\mathrm{C}(\mathrm{T})$ which is a contradiction

CSE 490gz - Lecture 2 - Winter 2002

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one node is optimal. Otherwise
2. Find the two lowest probability symbols with probabilities p and q respectively.
3. Replace these with a new symbol with probability $\mathrm{p}+\mathrm{q}$.
4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Example of Huffman Tree Algorithm (1)

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

CSE 490gz - Lecture 2 - Winter 2002

Example of Huffman Tree Algorithm (2)

14

Optimal Huffman Code vs. Entropy

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

Entropy
$\mathrm{H}=-\left(.4 \times \log _{2}(.4)+.1 \times \log _{2}(.1)+.3 \times \log _{2}(.3)\right.$
$\left.+.1 \times \log _{2}(.1)+.1 \times \log _{2}(.1)\right)$
$=2.05$ bits per symbol
Huffman Code
$\mathrm{HC}=.4 \times 1+.1 \times 4+.3 \times 2+.1 \times 3+.1 \times 4$ $=2.1$ bits per symbol pretty good!

CSE 490gz - Lecture 2 - Winter 2002
18

In Class Exercise

- $P(a)=1 / 2, P(b)=1 / 4, P(c)=1 / 8, P(d)=1 / 16$, $P(e)=1 / 16$
- Compute the Huffman tree and its bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: $a: 8, b: 4, c: 2, d: 1, e: 1$. Normalize at the end.

Powers of Two

- If all the probabilities are powers of two then

$$
\mathrm{HC}=\mathrm{H}
$$

- Proof by induction on the number of symbols. Let $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$ be the probabilities that add up to 1
If $\mathrm{n}=1$ then $\mathrm{HC}=\mathrm{H}$ (both are zero).
If $n>1$ then $p_{1}=p_{2}=2^{-k}$ for some k, otherwise the sum cannot add up to 1 .
Combine the first two symbols into a new symbol of probability $2^{-k}+2^{-k}=2^{-k+1}$.

Powers of Two (Cont.)

By the previous page,
$H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)-\left(p_{1}+p_{2}\right)$
By the properties of Huffman trees (principle 3),
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)+\left(p_{1}+p_{2}\right)$
Hence,
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound.

$$
H \leq H C \leq H+1
$$

- Huffman code does not work well with a two symbol alphabet.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
- HC = 1 bits/symbol

$$
\begin{gathered}
1 \\
0 \\
1
\end{gathered}
$$

$-\mathrm{H}=-\left((1 / 100)^{*} \log _{2}(1 / 100)+(99 / 100) \log _{2}(99 / 100)\right)$ $=.08$ bits/symbol

Extending the Alphabet

- Assuming independence $P(a b)=P(a) P(b)$, so we can lump symbols together.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
$-P(00)=1 / 10000, P(01)=P(10)=99 / 10000$, $P(11)=9801 / 10000$.

CSE 490gz - Lecture 2 - Winter 2002
24

Quality of Extended Alphabet

- Suppose we extend the alphabet to symbols of length k then

$$
H \leq H C \leq H+1 / k
$$

- Pros and Cons of Extending the alphabet
+ Better compression
- 2^{k} symbols
- padding needed to make the length of the input divisible by k

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_{I} x_{2} \ldots x_{n}$ we want to take into account x_{k-1} when encoding x_{k}.
- New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: $\{a, b, c\}$

Complexity of Huffman Code Design

- Time to design Huffman Code is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where n is the number of symbols.
- Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

CSE 490gz - Lecture 2 - Winter 2002

Approaches to Huffman Codes

1. Frequencies computed for each input

- Must transmit the Huffman code or frequencies as well as the compressed input
- Requires two passes

2. Fixed Huffman tree designed from training data

- Do not have to transmit the Huffman tree because it is known to the decoder.
- H. 263 video coder

3. Adaptive Huffman code

- One pass
- Huffman tree changes as frequencies change

CSE 490gz - Lecture 2 - Winter 2002

