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CSE 490GZ Final Exam Solutions 
 
1) True or false questions 

a) True – Blocks of bit-planes are encoded separately, providing the 
opportunity to spend different amounts of bits on different blocks. 
 
b) False – JPEG uses the DCT transform. 
c) True – This is due to auditory masking. 
d) False – There are no dependencies across a group of frames. 
e) False – The luminance component is more important for visual 
quality, so it is sampled at a higher rate. 
 
f) False – Using k-d trees, it requires time O(log n) on average. 
g) False – Blocking artifacts are smaller, but are not eliminated. 
h) True – Motion vectors can be predicted from other motion vectors. 
i) True – The lowest subband is transmitted first yielding a small 
image with high fidelity.  Successive subbands yield larger images 
with high fidelity. 
 
j) True – GT-DCT uses bit plane-coding of DCT coefficients and was 
shown to outperform JPEG. 
 
k) True – They all use bit-plane encoding which leads to natural 
embedded codes. 
 
l) False – Decoding each frame requires the previous one, so one 
lost frame affects the remaining frames in the video sequence. 
 
m) True – Predictive coding using differences is used to code the DC 
coefficient and the AC coefficients are zig-zag coded. 
 
n) True – PSNR does not accurately reflect audio quality. 
o) True – B-frames use both forward and backward prediction. 

 
2) Examining differences in encoding/decoding speed 

a) LZ77 – The encoder must search for the longest match to determine 
the triple that encodes the next portion of the input string, while 
the decoder is given the triple and does not need to perform the 
search. 
 
b) Burrows-Wheeler Transform – The encoder must sort the cyclic 
shifts of the input string while the decoder does not. 
 
c) MPEG-1 – The encoder needs to perform motion compensation which 
involves searching for the block in the previous frame that leads to 
the least distortion.  The decoder is given the motion vector and 
does not need to perform the search. 

 
3) Decode: 0010011100010 using LZW with doubling 

 
 
Symbol Code 

a 00 
b 01 
c 10 
 11 

Dictionary, size = 4 

Output: a 

Input: 0010011100010 

Next entry: a? 
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Symbol Code 

a 00 
b 01 
c 10 
ac 11 

 
 
Symbol Code 

a 000 
b 001 
c 010 
ac 011 
ca 100 
 101 
 110 
 111 

 
 
Symbol Code 

a 000 
b 001 
c 010 
ac 011 
ca 100 
acc 101 
 110 
 111 

 
 
Symbol Code 

a 000 
b 001 
c 010 
ac 011 
ca 100 
acc 101 
cac 110 
 111 

 
Decoded string: a c ac ca c 

 
4) Using the Burrows-Wheeler Transform decode the following: 

L = bbabbaa 
X = 2 
 
- Compute the mapping T by using the following rule: 
If F[i] is the k-th x in F, then T[i] is the index for the k-th x in 
L.  In other words, F[i] = L[T[i]]. 
 
index: 0 1 2 3 4 5 6 
F:     a a a b b b b 
L:     b b a b b a a 
T:     2 5 6 0 1 3 4 

Output: a c 

Input: 0010011100010 
 

Dictionary, size = 4 

Output: a c ac 

Input: 0010011100010 

Next entry: ac? 

Dictionary, size = 8 

Next entry: c? 

Output: a c ac ca 

Next entry: ca? 

Dictionary, size = 8 
Input: 0010011100010 

Output: a c ac ca c 

Next entry: c? 

Dictionary, size = 8 
Input: 0010011100010 
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- Decode the original string by using T[i] as the next index to read 
from F (that is, i’ = T[i]) where initially i = X. 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b b 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b b a 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b b a b 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b b a b b 
 
index:  0 1 2 3 4 5 6 
F:      a a a b b b b 
T:      2 5 6 0 1 3 4 
output: a b b a b b a 
 
Decoded string: a b b a b b a 

 
5) P(a) = 1/4, P(b) = 3/4 

C(a) = 0,   C(b) = 1/4 
Decode “011” using arithmetic coding with scaling (assume that we 
are decoding 4 symbols) 
 
Tag = .011 = 3/8  
W   L   R   Tag  Output 
   0   1   3/8  
1   1/4   1   3/8  b 
3/4  4/16  7/16  3/8  a  scale by 2x - 0.5 
   0   3/8  2/8    scale by 2x 
   0   6/8  4/8 
6/8  6/32  24/32  4/8  b 
18/32  21/64  48/64  4/8  b 
 
Decoded string: babb 
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6) Do one iteration of the Lloyd algorithm with initial codewords 
c(0)=2 and c(1)=3 on the data: 

pixel value 0  1  2  3  4  5  6  7 
frequency 200 100 100 50  50  100 200 200 
 
Initialization: 
X(0) = [0,1,2] 
X(1) = [3,4,5,6,7] 
D(0) = 100*12 + 200*22 = 900 

D(1) = 50*12 + 100*22 + 200*32 + 200*42 = 5450 
D = D(0) + D(1) = 6350 
 
First iteration: 
c’(0) = round((200*0 + 100*1 + 100*2) / 400) = 1 
c’(1) = round((50*3 + 50*4 + 100*5 + 200*6 + 200*7) / 600) = 6 
X’(0) = [0,1,2,3] 
X’(1) = [4,5,6,7] 

D’(0) = 300*12 + 50*22 = 500 

D’(1) = 300*12 + 50*22 = 500 
D’ = D’(0) + D’(1) = 1000 

 
7a) Optimal Huffman tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) ABR = (5*3 + 3*8 + 2*10 + 5*1 + 3*5 + 3*7 + 2*20 + 4*4) / 58 = 2.69 
           a     b     c      d     e     f     g      h 
 
8) Show the remaining steps in the Sequitur algorithm. 

abaab aaba  
 
S -> AaA 
A -> ab 
 
abaaba aba  
 
S -> AaAa    Enforce diagram uniqueness. 
A -> ab      Aa occurs twice.  Create new rule B -> Aa 

4 4 

1 

1 0 

8 

1 0 

d a 

h 

3 

12 

5 

1 0 

e f 

7 

16 

8 

0 

b 

1 

22 

10 

1 0 

c 

36 

20 

1 0 

g 

58 
1 0 



 5

abaaba aba  
 
S -> BB     Enforce rule utility. 
A -> ab      A only occurs once. 
B -> Aa     Remove A -> ab 
 
abaaba aba  
 
S -> BB      
B -> aba 
 
abaabaa ba  
 
S -> BBa      
B -> aba 
 
abaabaab a  
 
S -> BBab      
B -> aba  
 
abaabaaba  
 
S -> BBaba    Use rule B -> aba 
B -> aba  
 
a b a a b a a b a  
 
S -> BBB     
B -> aba  

 
9) Show how the class version of SPIHT processes the following 6 bits 
(assuming the signs of the coefficients in S have already been processed 
from the encoded bit stream) 
 

Encoded bit stream: 101100 
S = (0,0),(0,1),(1,0),(1,1) 
Z = (R,0,1),(R,1,0),(R,1,1) 
Z’ =  
 
Encoded bit stream: 101100 
(R,0,1) is significant 
S = (0,0),(0,1),(1,0),(1,1) 

 (0,2),(0,3),(1,2),(1,3) 
 
Encoded bit stream: 101100 
(0,2) has negative sign 
(0,3) has positive sign 
(1,2) has positive sign 
(1,3) has negative sign 
 
Z = (RC,0,1),(R,1,0),(R,1,1) 
Z’ = 
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Encoded bit stream: 101100 
(RC,0,1) is insignificant 
Z  = (R,1,0),(R,1,1) 
Z’ = (RC,0,1) 

 
10) Move-to-front coding followed by arithmetic coding uses the fewest 
number of bits.  The move-to-front coding will produce at least 2n-2 
zeros.  Only the first “a” and first “b” may not have an index of 0.  
This highly skewed alphabet will be coded very efficiently using 
arithmetic coding. Indeed it can be shown that the arithmetic code 
would have O(log n) bits. 
  
The two other methods use about the same number of bits. 
 
Arithmetic coding using the frequencies of the symbols as a first-order 
model uses about 2n bits.  Since a’s and b’s are equally likely then 
the arithmetic coding interval has size (1/2)2n. 
 
Adaptive arithmetic coding yields an arithmetic coding interval of 
 
1  2  3  …  n   1   2   3  …   n 
-  -  -  …  -   -   -   -  …   - 
2  3  4  … n+1 n+2 n+3 n+4 …  2n+1 
 
which equals n!n!/(2n+1)!. 
 
Taking the log2 of the reciprocal yields log2((2n+1)!/(n!)

2) bits 
approximately.  It can be shown by induction on n that 
log2((2n+1)!/(n!)

2)> 2n so that the adaptive arithmetic coding is no 
better than arithmetic coding using the frequencies.  A little more 
work shows that in the limit log2((2n+1)!/(n!)

2)/n = 2 so that in the 
limit the two methods use about 2n bits (no real compression). 


