
Michael Shintaku, shintaku
Matthew Staehely, mstaehel

Motivation

- Key problem:
- Regression testing can be difficult to prioritize
- Full regression testing takes too much time in practice

- Most of the time you are just interested in a subset of the tests
- Complex regression testing techniques can be unnecessary or too much “red

tape” for their scope (for the day-to-day programmer and their modules)
- Mandated large test suites can be made more efficient and relevant

- How everyday programmers deal with this today, and limitations of their approaches:
- Imposed/mandatory test suites

- Focuses the attention on where it matters
- Related thoughts:

- Is probability based prioritization more effective than other methods
Approach

- High-level approach:
- Build the tool/write and run the tests
- Categorize based on probability: simple pass/fail over the initial tests
- Select category/subset of tests, continually recalculate probabilities
- Allow for running x number of tests < y time

- Why this addresses the key problem (why we will succeed):
- It’s easy to use
- No-nonsense simplistic approach to help productivity on large or small

codebases
- Other techniques may be more effective for truly massive codebases

- Key difference between this and other approaches:
- Fast success on small portions of codebases prioritized over that on large-full

codebases
- Limitations:

- Scaling:
- Large codebases take extremely long to test fully (how to get significant

runs to calc. probability)
- Architecture:

- jUnit or TestNG?

Distinctions

- Distinctions between this and other tools:
- Focus on known, recurring faults

- Not estimating probability of tests revealing unknown faults
- Strictly probabilistic: not prioritizing based on code coverage
- Cost/optimized resource: only time

- Clarifications:

- Productivity:
- Organization of test ~= better time management

- If highly occurring failed tests are simple to fix
- MIGHT help focus productivity on core functionality than integrative parts

- This can also be done through better design/organization on the
user

- Scope:
- May not scale well, as it requires multiple runs of entire test suite to

gather probabilities
- Best for small-medium codebases ~lean teams or organizations

- Helps to quickly solve recurring failed tests -- timecrunch
Challenges/Risks

- Implementing it correctly in our selected architecture may be more challenging than
anticipated. Good research and code discipline will mitigate this.

- As with any project, proper management and teamwork is required

Basic UI Mock-up​:

