
Ishan Saksena
ishans@uw.edu
CSE490: Software Quality
Winter 2017

Software Development Difficulties

Myopic Documentation
The vast majority of libraries, frameworks and packages have documentation that

covers the content and abilities of the code itself. For example, the various algorithms
implemented in a library, what counts as valid input or what output to expect with which
functions. What most documentation doesn’t cover is use cases and purpose of the code
base. This often results in people using entire codebases for unintended purposes. This is
especially common with web development javascript frameworks. React.js for example,
starts out with instructions for installation, and, using the library. It completely skips
explaining why it exists and what it’s used for. A Virtual DOM for quick and dynamic
re-rendering is not mentioned on its own. The documentation never details use cases and
never explains what the framework is for. This information is usually picked up from other
sources like blogs, co-workers and news sources. Most documentation is also myopic in that
it doesn’t comment on how well it integrates with other frameworks. This is left to stack
overflow pages and dev forums.

React Documentation Index TensorFlow API Documentation Index

Current documentation could have introductions which cover purpose, use cases and
comparisons to other similar frameworks.

mailto:ishans@uw.edu

Changing Environments and Obsolescence
This is something I’ve struggled with quite a bit. Every once in awhile, environments

change completely, and libraries and frameworks take way too long to keep up with those
updates. The apple development environment is a good example of this. During the last
WWDC, Apple announced Swift 3. It is not backwards compatible with previous versions of
Swift. Apple made certain new frameworks only available in Swift 3. But, third party
frameworks were far from being updated any time soon. I was building an iOS app from
scratch and was unable to reuse a lot of code due to obsolescence. Using multiple versions
of the same language in the same project is difficult, so I had to rewrite a lot of code.

Services exist to automatically translate code from one version to another, but they
produce a lot of errors as they go. This is mostly because they replace all old syntax with
new syntax, but this doesn’t always suffice. For example, if the new method requires extra
parameters there is no way the service can come up with it.

Testing Hinders Maintainability
Testing tends to be a huge hindrance to extending or maintaining code.
Firstly, in larger codebases, it is really difficult to locate each unit test for every piece

of code that is being updated. Testing code resides in completely different parts of the
codebase. Tests are often unhelpfully named names like “Test1”, “Main_Tests”. There is
sometimes also a lack of documentation in the code base as to which tests correspond to
which pieces of code.

Secondly the user has to revisit and make any necessary updates to the unit tests.
Quite often, tests are not factored in a manner susceptible to being refactored. In extreme
cases, the tests cannot be updated to keep up with the code or specification changes, in
which case they have to be re-written.

Thirdly, most code happens to be interdependent. Classes instantiate other classes
and use other modules. Changing any part of the code necessitates revisiting tests.

While actual code is held to high standards of internal quality, testing code is not,
especially for:

1. Readability/Understandability
2. Extensibility
3. Modifiability/Maintainability
4. Reusability

The only solution I can think of is writing test code with the above listed factors in
mind.

