IRIS PATIENT IDENTIFICATION SYSTEM

Graham Blair, Angela Liu, Mark Tull

Winter 2013 | CSE 490d / HCDE 595d
with iRespond.org
Problem
2 Part Problem

1. **Identification** of patients in developing world is very difficult.

2. **Medical Records** in developing world are poor or non-existent and difficult to access/use.
Patient Identification

• Very difficult in developing countries

 • Lack of infrastructure
 • Lack of national accounting/tracking of citizenry (eg, USA SSN)
 • Lack of photo ID cards
 • means of authenticating cards…

• Linguo-Cultural hurdles
 • Maybe not enough names in language/dialect to accommodate entire population
Medical Records

- Often little or no records kept in developing world
 - (logistical issues)

- If records are kept, often of little use
 - Social Constraints
 - Similar to ID problems
 - (No national ID system, no photos, language, etc.)
 - Additionally:
 - Security/privacy concerns can cause poor record-keeping
Medical Records (cont.)

- Paper medical records may be of low value
 - Nomadic populations, mobile providers

- Electronic Medical Records (EMRs) may be of low value (or not used) because
 - Access problems
 - poor connectivity (e.g., rural areas)
 - Hardware/Software problems
 - no hardware
 - power problems
 - language input issues (keyboard, software language support)
How is identification done now?

- Frequently, by recruiting locals to help ID people
 - Translators
 - Tribal/village elders, etc.
 - “Connectors” (to use Malcolm Gladwell’s term)
- Unfortunately
 - Expensive / Difficult / Not always available

- …It’s done as best it can be per situation
 - Sadly, the results are often unsatisfactory
Who needs this? Who will it affect?

• Healthcare Workers and Researchers in Developing World
 • Providers, Researchers
 • Analysts / Policymakers
 • BONUS: in developed world

• Funders
 • Governments, NGOs
Solution
IRIS | Biometric Patient ID and EMR system

Scan → ID

- Retrieve Record
- Create Record

Access EMR
Project Description

Major Components

• **Device**
 - Smartphone, etc.

• **Fingerprint scanner**
 - or other biometric

• **Database**
 - Cloud-based, primarily
 - Local: temporary, caching, etc.
 - Remote: (sometimes)
Project Description

Stakeholders

• iRespond
 • IRIS
 • preliminary testing of some elements
 • other systems

• Thailand
 • Ministry of Public Health
 • Two universities participating
Design Challenges

• **Device Agnostic**
 • Browser-based

• **Language Agnostic**
 • Input only numerals (outside EMR)
 • Numeric-only SIDs

• **Users may have <HS equivalent education**
 • GUI

• **Globally scalable**
 • Numeric only SIDs (can’t use alpha characters)
 • Length of SIDs
Related Work

• ODK (Open Data Kit)

• India’s UIDAI project
 • 2010: biometric backed UIDs
 • 600 million by 2016
Findings so far

- Met with iRespond
 - Other biometrics possible in future
 - iris scanning, palm scanning, voice printing
 - Planning architecture is complicated
 - security, anonymity, scalability
 - securely assign UIDs
- Designing UI is difficult
 - universality, language
Basic Scenario
Architecture - Fingerprints

Lossless Image
Huge!

Template Creation Process

Template File
Very Small
Architecture - Verification

Create and Send Fingerprint Template

Yes – Return ID number.

Match found? (>80% match)

No – Prompt for enrollment.

Fingerprint DB
Architecture - Storage

<table>
<thead>
<tr>
<th>uid</th>
<th>template</th>
</tr>
</thead>
<tbody>
<tr>
<td>853461885514</td>
<td>fingerprint</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>dob</th>
</tr>
</thead>
<tbody>
<tr>
<td>853461885514</td>
<td>John Doe</td>
<td>2012-12-21</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Eleven regular, random digits. $10^{11} = 100000000000$

Different possible ID numbers.

Verhoeff Check Digit
Architecture - Localization

- - Not Immediately Accessible - -

Cloud

Temp ID & Template

Temporary On-Device Storage

Auto-Sync on Connection
Design and Evaluation

• Prototype/UI iteration:
 • iRespond feedback

• Evaluate
 • User testing
 • locally
 • field by iRespond staff
 • Criteria
 • success/failure of functions
 • used or avoided
 • effect on work
Plan for Next Quarter
Next quarter (rough plan)

• **First**
 - Finish Backend Development
 - Database, interaction with fingerprint scanner, etc.
 - Finish UI Design
 - Test paper prototypes in laboratory

• **Second**
 - Local testing of system
 - Evaluation, iteration
 - Execute Field Testing

• **Third**
 - Write-up / Present
Questions?

This presentation was on the IRIS system by iRespond.

We are Graham Blair, Angela Liu, and Mark Tull.

Thank you for your time.