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SUMMARY

Most human transcripts are alternatively spliced,
and many disease-causing mutations affect RNA
splicing. Toward better modeling the sequence de-
terminants of alternative splicing, we measured the
splicing patterns of over two million (M) synthetic
mini-genes,which includedegenerate subsequences
totaling over 100 M bases of variation. The massive
size of these training data allowed us to improve
upon current models of splicing, as well as to gain
new mechanistic insights. Our results show that the
vast majority of hexamer sequence motifs measur-
ably influence splice site selection when positioned
within alternative exons, with multiple motifs acting
additively rather than cooperatively. Intriguingly,
motifs that enhance (suppress) exon inclusion in
alternative 50 splicing also enhance (suppress) exon
inclusion in alternative 30 or cassette exon splicing,
suggesting a universal mechanism for alternative
exon recognition. Finally, our empirically trained
models are highly predictive of the effects of naturally
occurring variants on alternative splicing in vivo.

INTRODUCTION

Alternative splicing is a major source of proteome diversity in eu-

karyotes (Nilsen and Graveley, 2010). Regulation of alternative

splicing is vital to cellular processes that depend on the precise

ratios of isoforms. For example, mutations that lead to even sub-

tle changes in the ratio of MAPT isoforms 3R and 4R cause an

inherited form of dementia (Garcia-Blanco et al., 2004). While

new sequencing technologies have enabled the comprehensive

cataloging of human genetic variation, the functional conse-

quences of these variants on even molecular phenotypes, such

as alternative splicing, remain poorly predictable.

Experimentally testing the consequence of every possible

genetic variant on endogenous alternative splicing is impractical,

motivating the development of predictive models of the ‘‘splicing

code.’’ The core splicing signals—50 splice donor, 30 splice

acceptor, branchpoint, and polypyrimidine tract—form the basis
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of the splicing code; they are required for recognition of intron-

exon boundaries and for correct intron removal by the splicing

machinery. Computational methods have been developed to

score the likelihood of splicing at different splice donor and

acceptor sequences (Yeo and Burge, 2004). Splice regulatory

elements (SREs)—sequence motifs in exons or introns shown

to regulate splicing—form the next level of regulatory informa-

tion. SREs typically regulate alternative splicing by binding

trans-acting splice factor proteins (Ule et al., 2006; Wang et al.,

2013). Depending on their position and mode of action, SREs

are classified as exonic splice enhancers (ESEs), exonic splice

silencers (ESSs), intronic splice enhancers (ISEs), or intronic

splice silencers (ISSs). Examples of SREs have been identified

computationally by analyzing motif enrichment near splice sites

(Castle et al., 2008; Fairbrother et al., 2002; Zhang and Chasin,

2004) or sequence conservation between species (Goren et al.,

2006). Recently, a deep neural network was trained on exon

skipping events in the genome to generate a comprehensive

model of the splicing code that can be used to predict exon in-

clusion percentages (Xiong et al., 2014). Despite this progress,

current models of alternative splicing do not performwell enough

to be used in clinical genetics (e.g., to reclassify ‘‘variants of un-

certain significance’’), and many machine learning strategies

result in ‘‘black boxes’’ that limit mechanistic insight.

We hypothesized that a model of alternative splicing learned

from very large libraries of synthetic sequences could outper-

form models trained only on the genome. Current technology

makes it possible to create and test gene libraries with millions

of synthetic sequences—orders of magnitude more than the

number of alternative splice events in the human genome. In

other applications of machine learning, such as computer vision,

predictive power has increased greatly with access to larger

datasets (Le et al., 2012). Previous work supports the idea that

synthetic gene libraries with extensive and targeted variation

can provide mechanistic insight into biological phenomena.

In vivo (Culler et al., 2010; Wang et al., 2012) and in vitro (Yu

et al., 2008) randomized selections have identified potential

SREs. Massively parallel reporter assays (MPRAs) that combine

next-generation sequencing with extensive variation have been

applied to study transcription (Melnikov et al., 2012; Patwardhan

et al., 2012; Patwardhan et al., 2009; Sharon et al., 2012; Smith

et al., 2013; White et al., 2013), translation (Noderer et al., 2014),

mRNA stability (Oikonomou et al., 2014), and even alternative

mailto:gseelig@uw.edu
http://dx.doi.org/10.1016/j.cell.2015.09.054
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.09.054&domain=pdf


A

B

Alt 5' Library: N=265,137

Alt 3' Library: N=2,211,789

Figure 1. A Predictive Model of Alternative

Splicing Learned from Millions of Synthetic

Sequences

(A) Two libraries with either alternative 50 or

30 splice sites were constructed with two 25-nt

randomized regions. The library was transfected

into human cells, and massively parallel mea-

surement of isoform ratios was performed with

RNA-seq. These two datasets were used to learn a

predictive model of alternative splicing. The model

takes a sequence as input, which is then con-

verted to 6-mer features. A score for each 6-mer is

learned and then used to predict the fractional

usage of each splice site.

(B) When human sequence variants are fed to

the model as inputs, the model makes more ac-

curate predictions than the current state of the art

algorithms.
splicing (Ke et al., 2011). However, MPRA studies to date have

overwhelmingly focused onmeasuring the consequences of var-

iants in endogenous sequences (e.g., saturation mutagenesis) or

on validating predicted activities (e.g., enhancers predicted by

the ENCODE project). There are thus far few, if any, examples

of predictive biological models learned entirely on MPRA data.

To test whether it is possible to learn predictive biological

models from synthetic data alone, we developed an MPRA

that measures alternative splice site selection in a highly com-

plex library of ‘‘degenerate introns’’ (Figure 1A). We added

degenerate regions into an otherwise fixed sequence context,

ensuring that any differences in gene expression can be causally

attributed to the degenerate region. We created two libraries,

one with alternative 50 splice donors consisting of 265,137 mem-

bers and one with alternative 30 splice acceptors containing

2,211,739 members. We transfected these libraries to human

cells, performed RT-PCR and RNA sequencing (RNA-seq)

to quantitatively measure isoform ratio for all mini-genes and

used the results to learn a predictive model of alternative

splicing. To assess the quality of the resulting model, we pre-

dicted the effects of human sequence variants on isoform levels

and compared our results to available experimental data (Fig-

ure 1B). We tested variants in alternative 50 splicing events,

both within the alternative splice donors themselves and within

the alternative exon. Although our MPRA did not include a skip-

ped exon library, our model also predicted with high accuracy

the effect of sequence variants in skipped exons.

RESULTS

Molecular Phenotyping of Millions of Alternatively
Spliced Mini-Genes Containing Random Sequences
We chose to study both alternative 50 and alternative 30 splice
site selection. In the case of alternative 50 splicing, we first gener-
Cell 163, 698–711,
ated a complex library by introducing 23

25 nt fully degenerate regions into a sin-

gle-intron plasmid mini-gene (Figure 2A).

Specifically, the intron was designed

with two competing splice donors sepa-
rated by 44 nt; one degenerate region was inserted between

the splice donors and the other downstream of the second

donor. Neither degenerate sequence overlapped a splice donor.

The mini-genes contained an additional degenerate 20 nt

barcode in the 30 UTR. This barcode was used to create a

look-up table linking barcodes and intronic sequences. Thus,

even when both degenerate regions were spliced out, their se-

quences could be recovered from the barcode sequence (Fig-

ure 2A). To maximize intron sequence variability, we constructed

and sequenced a complex library of 265,137 such mini-genes.

Thus, over 13 Mb of unique intronic sequence are represented

within the degenerate regions of this library (265,137 3 50 nt).

In the case of alternative 30 splicing, we inserted 2 3 25 nt

fully degenerate regions into a single-intron system designed

to have two alternative 30 splice sites (Figure 2C). The degen-

erate regions did not overlap either splice acceptor, but the

upstream degenerate region did overlap the typical position

of the first splice acceptor’s branchpoint (�44:�19 relative

to SA1). Similarly to the alternative 50 library, we included

an additional degenerate 20-nt barcode in the 30 UTR. The

alternative 30 library contained 2.2 million unique mini-genes

encompassing over 110 Mb of unique sequence variation

(2,211,739 3 50 nt).

We transfected the pooled libraries of plasmids into HEK293

cells and then quantified isoform ratios with targeted RNA-seq.

To identify both the isoform and originating plasmid of each

mRNA, we used paired-end sequencing with one read across

the exon junction and the other read across the 30 UTR barcode

(Figures 2A and 2C). We used 13 million reads for the alternative

50 library and 5.4 million reads for the alternative 30 library. We

were then able to calculate the isoform ratios for each mini-

gene in each library. We averaged 50.0 reads per mini-gene in

the 50 library with reads mapping to 265,044/265,137 (99.96%)

of all mini-genes. On the other hand, in the 30 library we averaged
October 22, 2015 ª2015 Elsevier Inc. 699



only 2.47 reads per mini-gene with reads mapping to 1,686,096/

2,211,739 (76.23%) of all mini-genes.

Degenerate Sequences in Both Libraries Strongly
Influence Isoform Ratios
In the alternative 50 library, isoforms were present from several

different splicing events. The most upstream splice donor (SD1)

was used on average 22.4% of the time, while SD2 was used

50.0% of the time (Figure 2B). The remaining transcripts were

spliced at new splice donors inserted into the randomized

regions (11.3%), a cryptic splice donor site (SDCRYPT) 35 nt

downstream of SD2 (7.9%), or not spliced at all (8.4%). However,

as evidenced by the broad distributions of usage at each SD

(Figure 2B), the degenerate regions had a strong influence on

splice site selection. For instance, although 49.7% of mini-genes

spliced at SD1 with less than 5% frequency, 7,705 mini-genes

(2.9%) spliced at SD1 with over 95% frequency.

In the alternative 30 library, we also found isoforms from

different splicing events, although splice site usage was less

evenly balanced than in the 50 library. SA1 was used an average

of 3.3% of the time, while SA2 was used 89.2% of the time

(Figure 2D). In this library, new splice sites in the randomized re-

gions were only used with 0.3% frequency, probably reflecting

the larger information footprint of splice acceptors (>20 nt)

compared to splice donors (9 nt), which makes the occurrence

of new sites within the degenerate regions less likely. Similarly

to the 50 library, we inadvertently inserted a cryptic splice

acceptor 16 nt upstream of SA2 that was used with 4.6% fre-

quency. Many other cryptic splice sites were used with very

low frequency (1 3 10�7 to 5 3 10�3) accounting for a total of

2.3% of transcripts. In contrast with the alternative 50 library,
only 0.3% of transcripts were unspliced. Although SA2 was the

dominant splice site, 0.7% of the 1.2 M of mini-genes repre-

sented by multiple reads spliced 100% at SA1.

With so many transcripts in each library splicing at new splice

sites, we asked whether we could rediscover the known motifs

for splice donors and splice acceptors from the de novo sites

alone. When we plotted the relative frequencies of each base

at each position for new splice donors (Figure 2E) and new

splice acceptors (Figure 2F), both splice site motifs were nearly

identical to the expected motifs for splice donors and splice

acceptors. More specifically, the splice donors contained the ca-

nonical GT at the +1:+2 positions, while the splice acceptors

contain a clear polypyrimidine tract (T and C rich), followed by

N[CT]AGG. The ability to fully rediscover canonical signals for

splice donors and splice acceptors demonstrates the rich type

of information contained in each dataset.

We also asked whether translation might affect the mRNA sta-

bility in our libraries. Sequencing of the alternative 50 library

yielded fewer median reads on mRNA from mini-genes that

were primarily spliced out of frame than in frame (Figure S1A).

However, when the mini-genes contained a premature stop

codon, the median number of reads per mRNA was similar for

all three reading frames (Figure S1B). These results indicate

that a large string of amino acids translated out of frame will

destabilize the mRNA, likely through the no-go decay pathway

(Doma and Parker, 2006; Shoemaker et al., 2010) as ribo-

somes stall due to protein misfolding. We also find evidence of
700 Cell 163, 698–711, October 22, 2015 ª2015 Elsevier Inc.
nonsense-mediated decay, but only if the premature stop codon

occurred >40 nt upstream of the splice donor. This is consistent

with previous studies on nonsense-mediated decay that suggest

the premature stop codonmust occur >50 nt upstreamof the last

exon junction (Lewis et al., 2003).

Splicing Is More Likely to Occur at Upstream Splice
Donors
From an analysis of the new splice sites, we found strong evi-

dence that upstream splice donors were favored over down-

stream splice donors; new splice donors inserted in the first

degenerate region were 4.1 times more likely to be used than

new splice donors inserted into the second degenerate region

(region 1: 849,666 spliced reads; region 2: 208,396 spliced

reads). Furthermore, the effect of position of splice donors within

each degenerate region was significant (p < 0.005; Figure S1C).

The number of spliced reads at a new splice site decayed expo-

nentially with the distance from SD1 (Figure 2G). Splicing has

been shown to be co-transcriptional, and spliceosome compo-

nents can begin to assemble at a 50 splice donor before down-

stream alternative slice sites are transcribed (Listerman et al.,

2006), suggesting a potential mechanistic explanation for the

observed effect. This strong bias for upstream splice donors is

consistent with the typically short length of exons in the human

genome (Burge and Karlin, 1997).

Splicing Is Less Likely to Occur at Splice Acceptors with
Distal Branchpoints
Large-scale mapping of human branchpoints with RNA-seq

found that 90% of mapped branchpoints occur between 19–

37 nt upstream of the splice acceptor (Mercer et al., 2015). How-

ever, it remains unclear just how detrimental a distal branchpoint

is toward efficient splicing. Consensus branchpoints (CU[AG]A

[CU]) occur over 10,000 times at every position between 40 to

19 nt upstream of SA1 in our dataset, allowing us to answer this

question. We found that mini-genes with a consensus branch-

point sequence 19 nt upstream of SA1 were approximately six

times more likely to be spliced at SA1 relative to those with a

branchpoint 40 nt upstream of SA1 (Figure 2H). One explanation

for this phenomenon could be that distal branchpoints are more

likely to contain another AG between the branchpoint and SA1

that could be used as an alternative splice acceptor. However,

we observed a strong distance dependence on branchpoint po-

sition for sequences both with and without an AG between the

branchpoint and SA1 (Figure S1D). This result suggests that

mechanism by which distal branchpoints reduce splicing effi-

ciency is primarily due to the increased distance between the

branchpoint and the splice acceptor and/or polypyrimidine tract.

Sequence Motifs in Alternative Exons Have a Stronger
Regulatory Role than Intronic Sequences
Next, we asked how short sequence motifs affect splice site

selection in different contexts. We chose to analyze the effects

of 6-mer because each possible 6-mer occurs within an average

of 1,294 mini-genes for the alternative 50 library, and 8,232 mini-

genes for the alternative 30 library. Furthermore, most known

RNA binding proteins (RBPs) are reported to bind sequences be-

tween 4–8 nt (Lunde et al., 2007). In order to estimate the effect of



Figure 2. Splice Site Selection in Two Million Alternative 50 and 30 Spliced Sequences

(A) A schematic of the alternative 50 library. Spliced readsmap to SD1, SD2, and a cryptic splice site (SDCRYPT), as well as new splice donors (SDNEW) created in the

degenerate regions.

(B) Distributions of splice site usage across library mini-genes. Distributions are shown for SD1, SD2, SDCRYPT, and SDNEW. Insets correspond to the framed

regions in the main graph. Mean splice site usage is indicated with a blue vertical line.

(C) A schematic of the alternative 30 library. Spliced readsmap to SA1, SA2, and a cryptic splice site (SACRYPT), as well as new splice donors (SDNEW) created in the

degenerate regions.

(D) Distributions of splice site usage across library mini-genes. Distributions are shown for SD1, SD2, SDCRYPT, and SDNEW. Insets correspond to the framed

regions in the main graph. Mean splice site usage is indicated with a blue vertical line.

(E) The splice donor motif recovered from the new splice alternative 50 library matches the previously known human splice donor site.

(F) The splice acceptor motif recovered from the new splice alternative 50 library matches the previously known human splice acceptor site.

(legend continued on next page)
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each possible 6-mer in each region, we calculated splice site us-

age for the subset of mini-genes containing the 6-mer and for the

much larger subset not containing the motif. We then asked to

what extent the odds of splicing at a splice site changed in the

presence of the motif relative to the control set. To quantify

this ‘‘effect size,’’ we used the log2 odds ratio with and without

the 6-mer present (Supplemental Experimental Procedures).

For example, we found that mini-genes containing the 6-mer

GTGGGG in the first degenerate region of the 50 library were

spliced at SD2 only 19.0% of the time, while RNA derived from

mini-genes not containing this motif spliced at SD2 50.2% of

the time, resulting in an effect size of �2.1 (Figures S2A–S2D).

In other words, the odds of splicing at SD2 are 4.29 (22.1) times

lower in the presence of GTGGGG compared to its absence.

In Figure 3A,weplot the empiricallymeasured effect sizes of all

hexamers in the first degenerate region on the relative usage of

SD2 and SD1, with 95% confidence intervals. The strongest en-

hancers located in the alternative exon (included when splicing

occurs at SD2, but excluded when splicing occurs at SD1)

increased the odds of splicing at SD2 4.38-fold, while the stron-

gest silencers decreased the odds 16-fold. Approximately 15%

of 6-mer have been previously identified as SREs (Culler et al.,

2010; Fairbrother et al., 2002; Wang et al., 2004, 2012) (622/

4,096), but here 82.9% of 6-mer (3,396/4,096) exhibited a signif-

icant effect on isoform selection (95% confidence interval does

not contain zero effect size). Intriguingly, the cumulative effects

of previously identified SREs accounted for only 20% of the cu-

mulative effects of all possible 6-mer. The strongest silencers

were G rich, consistent with known binding sites for hnRNPs

(Martinez-Contreras et al., 2006). On the other hand, some of

the strongest enhancers for SD2 appear to act by generating sec-

ondary structure aroundSD1: the6-merperfectly complementary

to part of SD1 (�3 to +8) were all in the top 6% of SD2 enhancers

(percentiles: 97.77, 99.75, 99.97, 94.23, 94.79, and 98.92).

We then looked at the effects of 6-mers in the second degen-

erate region (30 to SD2). Unlike the first degenerate region, which

is located within the alternative exon region, the second degen-

erate region is intronic to both SD1 and SD2. We found that the

effect sizes weremuch smaller than in the first degenerate region

(Figure 3B). The strongest enhancer and silencer of SD2, respec-

tively, only changed the odds of splicing at SD2 relative to SD1

1.95-fold and 1.48-fold. Furthermore, only 36.7% of 6-mer

(1,505/4,096) had a statistically significant effect.

We performed a similar analysis for each degenerate region on

the usage of SA1 in the alternative 30 library (Figures 3C and 3D).

Again, we found that motifs in the alternative exon (30 of SA1, but

50 of SA2) had strong effect sizes (statistically significant 6-mer

effect sizes: 3,500/4,096, 85.4%; strongest enhancer: 3.84-fold

increase in odds of splicing at SD2; strongest silencer: 9.87-

fold decrease in odds of splicing at SD2). Unlike in the alternative

50 library, we found that motifs in the intronic degenerate region
(G) The number of spliced reads at each position within the randomized region

upstream (50) splice donor than at a downstream (30) splice donor. The gray line is

the log read count at that location.

(H) Mini-genes with a consensus branchpoint near SA1 are much more likely to us

usage, when there is no consensus branchpoint.

See also Figure S1.
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(50 of SA1 and SA2) also had quite strong effects (statistically

significant 6-mer effect sizes: 3,248/4,096, 79.3%; strongest

enhancer: 3.45-fold increase in odds-ratio; strongest silencer:

4.63-fold decrease in odds-ratio), although still generally smaller

in magnitude than the downstream alternative exon region.

When we looked at the strongest 6-mer enhancers of SA1 in

this intronic region, we found they all fit the consensus branch-

point sequence CU[AG]A[CU] (Figure 3D).

The Same Sequence Motifs Regulate Alternative Exon
Inclusion Independent of the Type of Alternative
Splicing
Surprisingly, we found that the effect sizes of 6-mers occurring

within the alternative exon regions were extremely similar be-

tween the alternative 50 and 30 libraries (Figure 3E; R2 = 0.68).

We looked at several motifs known to bind splice factors or

that have previously been identified as ESEs/ESSs (G-run,

SRSF1, hnRNPA1, hnRNPH2) and found the effect sizes to be

highly correlated. In both libraries, GGGGGG was the strongest

exonic silencer (50 library: 16.0-fold change in odds ratio; 30 li-
brary: 9.87-fold reduction in odds ratio).

We also compared the effect sizes of intronic 6-mers (second

randomized region in the alt. 5 library; first randomized region in

the alt. 30 library) between the two libraries. We found a signifi-

cant, but weaker, correlation between the 6-mer scores (R2 =

0.27; Figure S2E). The first randomized region in the alternative

30 library overlaps the expected location of the SA1 branchpoint,

which may reduce the effect size correlation. However, the

weaker correlation can also be explained by the fact that the

effect sizes of intronic 6-mer were much smaller in magnitude

compared to 6-mer within the alternative exon regions.

Sequence Motifs Regulate Exon Inclusion Additively
Rather than Cooperatively
Although previous studies have observed co-occurrence of

conserved sequence motifs around splice sites (Barash et al.,

2010), it remains unclear whether such motifs act cooperatively

or additively and independently of one another to regulate alter-

native splicing. In an additive and independent model of regula-

tion, the joint effect size of multiple motifs should simply equal

the sum of the individual effect sizes (Figure 4A). To assess

this, we examined the joint effect sizes of pairs of 4-mers on

alternative exon-inclusion levels in both the 50 and 30 libraries.
We chose 4-mers because pairs of 4-mers occur sufficiently

often within each randomized region to allow for robust effect

size measurements (alt. 50 library: 692 mini-genes/4-mer pair;

alt. 50 library: 4,399 mini-genes/4-mer pair).

We first calculated the individual effect size of all 4-mers on

exon inclusion in the 50 library. We then calculated the joint effect

size of every possible pair of non-overlapping 4-mers. Surpris-

ingly, we found that combinatorial effects were extremely well
s shows a strong position dependency. Splicing is more likely to occur at an

a fit that shows the linear relationship between the location of splice donor and

e SA1 than mini-genes with a distal branchpoint. The red line indicates the SA1



Figure 3. Measured Effect Sizes of Individual 6-mer in Each Degenerate Region

(A–D) Tomeasure how sequencemotifs alter the relative use of SD2/SD1 or SA1/SA2, we calculated effect sizes for every 6-mer (n = 4,096) within each degenerate

region in both libraries. We defined effect sizes as the log odds ratio of SD2 or SA1 usage between mini-genes with/without the 6-mer of interest. The 6-mer are

ranked by estimated effect size and plotted with 95% confidence intervals generated by bootstrapping with replacement. (A) Alternative exon region in 50 library.
(B) Intronic region in 50 library. (C) Alternative exon region in 30 library. (D) Intronic region in 30 library.
(E) The 6-mer scores in the alternative exon region in both the 50 and 30 libraries (A and C) are highly similar, suggesting alternative splicing in both libraries is

regulated by the same mechanism.

See also Figure S2.
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Figure 4. Combinatorial Regulation of

Alternative Splicing Is Additive

(A) An additive model of alternative splicing regu-

lation: the joint effect size of two 4-mer is equal to

the sum of the individual 4-mer effects.

(B) Using an additive model, the predicted

combinatorial effect size of every pair of 4-mer (n =

65,536) is plotted on the left. Each pixel corre-

sponds to a pair of 4-mer with the 50 4-mer on the

x axis and the 30 4-mer on the y axis. The

measured combinatorial effect sizes from the 50

library data are plotted in the middle. The residuals

between the additive model and the observed

data are plotted on the right. The additive model

explains >90% of the combinatorial effect sizes

(R2 = 0.913).

(C) The same analysis is repeated for the alterna-

tive 30 library. In this library the additive model

explains over 95% of the combinatorial effect

sizes (R2 = 0.954).

See also Figure S3.
captured by the sum of the 4-mer’s individual effect sizes (R2 =

0.913; Figure 4B). We did the same analysis for 4-mers located

in the second degenerate region of the 30 library. Here, the linear

model fit the experimental data even better (R2 = 0.954; Fig-

ure 4C). Thus, while specific instances of cooperative sequence

interactions have been well documented (Huelga et al., 2012;

Oberstrass et al., 2005), our results suggest themajority of motifs

primarily exert their influence on exon inclusion independently of

the surrounding motifs.

Predicting Isoform Ratios in Alternative Splicing from
Sequence Information
We then turned to the task of learning a model of alternative

splicing to predict isoform levels from sequence information.

Becausecombinatorial regulationofalternativesplicingwasaccu-

rately captured by an additive model, we postulated that an addi-

tive model with short sequences as input features would perform
704 Cell 163, 698–711, October 22, 2015 ª2015 Elsevier Inc.
well for prediction. Using both the 50 and 30

libraries, we trained a joint model of alter-

native exon definition in which a score is

learned for each of the 4,096 possible 6-

mers (Figure S3A). The scores learned

here are similar to the previously calcu-

lated effect sizes, but rather than

measuring the effects of a single 6-mer

one at a time, we learned all the scores

together through regression. Given the

large number of new splice donors ap-

pearing within the 50 library, we also chose

to train a model of the splice donor site

itself (Figure S3B). When we tested the

splice donor model using cross validation,

we found it accurately predicted the frac-

tion of reads mapping to the three original

splice donors, accounting for up to 75%of

observed isoform variability (R2: SD1 =

0.75, SD2 = 0.75, SDCRYPT = 0.54; Fig-
ure 5A). It also proved accurate in predicting the position and

fraction of reads mapping to newly created splice donor sites

within the degenerate regions (R2: 0.83; Figures 5A and 5B).

A fundamental advantage of testing synthetic sequences is the

ability to learn from larger datasets thanwere previously available.

As an attempt to quantify this advantage, we calculated learning

curvesonasimplemodel predictingusageofSD1 in thealternative

50 library. We split our data into training and test sets (90%/10%

split) and trained models using subsets of the training data (be-

tween 100 to 177,827 training points). We also trained separate

models using 3-mers, 4-mers, 5-mers, 6-mers, or 7-mers. With

limited data (1,000 or fewer training points), the simplest model

(3-mers) made the most accurate predictions, while the 7-mer

model made the least accurate predictions, with the other models

ordering between (Figure 5C). However, with the largest training

subset (177,827 points), the results were reversed with the 7-mer

model achieving the highest accuracy. Based on the slopes of



(legend on next page)
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the learning curves, the 3-mer to 5-mer models would not benefit

significantly frommore data points (> 177,827), but the 6-mer, and

especially the 7-mer, models seem likely to achieve significantly

higher prediction accuracy with larger training sets. These results

highlight the intuitive point that richer feature sets can improve

predictions accuracy, but require more data to properly train.

Predicting the Effects of Human Genomic SNPs on
Alternative Isoform Ratios
Next, we asked whether we could apply our model (HAL [hex-

amer additive linear])—developed entirely in the context of

synthetic mini-genes—to predict changes in alternative splice

donor usage caused by common polymorphisms in human

genomes. As a first test case, we focused on 50 alternative

splicing. Combining DNA and RNA sequencing data, respec-

tively, from the 1000 Genomes Project (Abecasis et al., 2012)

and GEUVADIS consortium (Lappalainen et al., 2013), we calcu-

lated the percent of splicing at the downstream alternative splice

donor (percent spliced in [PSI]) of wild-type genotypes for 8,546

50 alternative splicing events using the MISO software package

(Katz et al., 2010). We separately calculated mean isoform levels

for genotypes heterozygous or homozygous for a single SNP in

the region between the two competing splice donors or within

the splice donors themselves (Table S1).

We began by investigating whether the model of the actual 9-

nt splice donor sequence—again learned completely from our

synthetic mini-genes—could accurately predict the effects

of SNPs occurring within splice donor sequences. We also

compared our prediction accuracy to a leading splice donor pre-

diction tool trained directly from splice donor usage in the human

genome (MaxEnt) (Yeo and Burge, 2004). Among heterozygous

SNPs in alternative splice donors occurring in multiple individ-

uals, we found that 93 of 199 SNPs altered PSI by >5% (Figures

6A and 6B). Within this set, HAL predicted the direction of

change with 87.1% accuracy (81/93; binomial p = 9.83 3

10�14), while MaxEnt predicted the direction of change with

81.7% accuracy (76/93; binomial p = 4.45 3 10�10). Among

the 35 homozygous SNPs in splice donors that alter PSI

by >5%, our model predicted every SNP correctly, while MaxEnt

made two mistakes (HAL: 35/35, binomial p = 5.82 3 10�14;

MaxEnt: 33/35, binomial p = 3.67 3 10�10). For the set of

SNPs within splice donors, our model explained 59.3% of the

observed heterozygous effects (R2 = 0.593, p = 6.38 3 10�8)

and 67.7% of the observed homozygous effects (R2 = 0.677,

p = 4.65 3 10�24). This is a substantial improvement over Max-

Ent, which accounted for 39.8% of the observed heterozygous

effects (R2 = 0.398, p = 1.223 10�11) and 41.1% of the observed

homozygous effects (R2 = 0.411, p = 3.33 10�5). Even when we
Figure 5. A Model Accurately Predicts Alternative 50 Splicing and the L

(A) For each splice donor (SD1, SD2, SDCRYPT), model predictions are plotted aga

plasmid. The results are also plotted for all new splice sites (SDNEW).

(B) The prediction results for three different mini-genes are shown with the associa

averaging the model weights of all 6-mer overlapping the nucleotide. In the first e

which is confirmed by RNA-seq.

(C) A learning curve was generated for different models that predict the fraction o

small training sets (<1,000 data points), but with more data points, richer feature

See also Figure S5.
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extended our analysis to all SNPs (including those with less than

5% change in PSI), we found HAL substantially outperformed

MaxEnt (HAL: R2 = 0.48; MaxEnt: R2 = 0.22; Figure S4A).

We then applied the model to predict the effects of human

genomic SNPs in the alternative exon region between, but not

overlapping, splice donors. Because most SNPs not occurring

in actual splice sites are likely to only have modest effects, we

restricted our analysis to SNPs with at least ten homozygous

wild-type or ten heterozygous samples expressing the relevant

mRNA. Moreover, we focused on SNPs that resulted in a change

in the PSI of at least 5% to minimize the impact of measurement

noise on the validation dataset; 43/344 heterozygous and 20/

131 homozygous SNPs altered the PSI by >5% (Figure 6C). HAL

correctly predicted thedirectionof change for 37/43heterozygous

and 17/20 homozygous SNPs (p: heterozygous = 1.63 3 10�6,

homozygous = 2.58 3 10�3, combined = 6.11 3 10�9). Further-

more, our model explained around half of the total observed

effects of these SNPs (heterozygous: R2 = 0.570, p = 9.23 3

10�9; homozygous: R2 = 0.442, p = 1.393 10�3). Thus, our model

not only outperformed the state of the art splice donor algorithm

(MaxEnt) at predicting the effects of SNPs within splice donors

but alsosuccessfullypredicted theeffectsofSNPswithin thealter-

native exon region, which to our knowledge, no other tool can do.

Predicting Alternative 50 Isoform Levels from Sequence
Information
To further assess the accuracy of our splice donor model, we

predicted the isoform ratios in 6,152 alternative 50 splicing events

expressed in lymphoblastoid cell lines and compared our results

to four other splice donor prediction algorithms. Our splice donor

model substantially outperformed all of the other algorithms (Fig-

ure S5; Table S2). Interestingly, all of the models (including ours)

performed better on events with shorter alternative exon regions

(i.e., the region between splice donors). In these events, there is

less space for regulation between the splice donors, possibly

simplifying the prediction task.

Predicting the Effects of Variants on Exon Skipping in
Mendelian Diseases
The most common form of alternative splicing is neither alter-

native 50 or 30 splicing, but exon skipping. Exon skipping is

a highly regulated form of alternative splicing in human cells,

and misregulation of cassette exon splicing can cause disease

(Garcia-Blanco et al., 2004) and cancer (Kim et al., 2008). Given

the relatively more complex structure of skipped exons, it might

on first sight seem unlikely that a model trained only on 50and 30

alternative splicing should be able to predict levels of exon

inclusion. However, we hypothesized that the similarity between
ocation of New Splice Donors

inst the observed splice site usage fraction. Each point represents a single test

ted nucleotide scores for each isoform. Each nucleotide score is calculated by

xample mini-gene, HAL predicts the usage and position of a new splice donor,

f splicing at SD1. The simplest model (3-mer features) performed the best with

sets offer better performance.



Figure 6. Splicing Model Identifies the

Functional Effect of SNPs on Alternative

Splicing

(A–C) Model predictions are plotted with the PSI

measured fromRNA-seq for SNPs occurring in the

upstream splice donor (A), the downstream splice

donor (B), and between the competing splice

donors (C) that alter the measured PSI by greater

than 5%. The observed PSI from RNA-seq for the

wild-type genotype (gray bar) and genotypes

containing the SNP (red) are plotted together with

the model prediction (blue). The model accurately

predicts the direction of change of the heterozy-

gous SNPs in splice donors with 87.1% accuracy

(81/93; binomial p = 9.83 3 10�14) and the het-

erozygous SNPs between splice donors with

86.0% accuracy (37/43; binomial p = 8.183 10�7).

See also Figure S4 and Tables S1 and S2.
the sequence determinants of alternative exons in alternative 50

and 30 splicing might extend to exon skipping as well. If this

were the case, we would expect our model to accurately predict

the effects of exonic sequence variants on skipped exon-inclu-

sion levels, even though it was never trained directly on any

exon skipping data. We tested this hypothesis in the context of

mutations in several distinct genes that are known to causeMen-

delian disease by promoting exon skipping (Figure 7A; Table S3).

First, we compared model predictions to experimental data for

theSMN1 andSMN2 genes, whosemisregulation can lead to spi-
Cell 163, 698–711,
nal muscular atrophy. Our model correctly

predicted increased or decreased exon

7 inclusion in 205/229 (89.5%; Figure 7D)

variants with experimental data. In

Figure 7B, we compare predictions

(increased or decreased exon inclusion)

to experimental data. To make the plot

more readable, we only included a single

SNP at each position. Our model accu-

rately predicts increased/decreased

exon inclusion for 20/22 of the plotted

SNPs. On just the variants with quantita-

tive data (n = 131), our model explained

65% of the observed variance (R2 =

0.65; Figure 7E). The SMN1/2 variants

that we tested included SNPs, indels,

and combinations of up to 30 nt changes.

We then tested our model on variants

in CFTR, whose misregulation can lead

to cystic fibrosis. Our model correctly

predicted increased/decreased exon

12 inclusion in 19/22 variants (Figure 7D).

When we only looked at the SNP with

the largest effect at each position, our

model accurately predicted increased/

decreased exon inclusion for 11/12

SNPs (Figure 7C). Among all the CFTR

variants, our model explained 60% of the

observed variance (Figure 7E; R2 = 0.60).
Next, we tested our model predictions on variants in exon 7 of

the BRCA2 gene, a tumor suppressor responsible for DNA dam-

age repair. Mutations in BRCA2 affecting the ability of the pro-

tein to repair DNA lead to such an increased risk of ovarian and

breast cancer that patients with these mutations may choose to

have prophylactic surgery. However, the effect of many variants

on alternative splicing and hence protein function remain un-

known, forcing patients and doctors to make clinical decisions

with limited information. The ability to identify deleterious

variants computationally can provide valuable information to
October 22, 2015 ª2015 Elsevier Inc. 707



Figure 7. Predicting the Effects of Exonic

Variants on Exon Skipping

(A) The inputs to the splicing model can include

SNPs, indels, or complex variants within the alter-

native exon. The splicing model then predicts the

exon inclusion levels with the variant present.

(B) Model predictions are compared to experi-

mental results using RT-PCR for SNPs occurring

in exon 7 of SMN2. For positions with data for

multiple SNPs, the SNP with the largest measured

change in PSI was plotted. The model accurately

predicted the directional change in PSI (increased

exon inclusion/exclusion) for 20/22 SNPs plotted.

(C) Model predictions are compared to experi-

mental results using RT-PCR for SNPs occurring

in exon 12 of CFTR. The model accurately pre-

dicted the directional change in PSI for 11/12

SNPs plotted.

(D) The prediction accuracy for variants in SMN2,

CFTR, and BRCA2 ranged from 86% to 90%.

(E) The change in PSI is plotted for every variant

with RT-PCR data. The model explains over 60%

of the effects of SNPs for variants each gene

tested (SMN1/2, CFTR, and BRCA2).

See also Figure S6 and Table S3.
patients with these variants of unknown significance. Our model

correctly predicted increased/decreased exon 7 inclusion for

31/35 variants that experimentally altered inclusion levels (Fig-

ure 7D). The model correctly predicted 19/22 of the SNPs with

the largest effect at each position within the exon (Figure S6B).

Among all the BRCA2 variants, our model explained 67% of the

observed variance (R2 = 0.67; Figure 7E).

We then compared our results to SPANR (Xiong et al.,

2014)—the current state of the art in predicting the effects of

SNPs on exon skipping. SPANR consists of a Bayesian deep

learning algorithm trained on exon skipping events in the

human genome with 1,393 carefully hand-selected features.

As of this paper, SPANR only supports predictions of SNPs,

so we were not able to compare our predictions on more com-

plex variants. However, for SNPS in SMN1/2, CFTR, and

BRCA2, we found that HAL accounted for three times more

of the observed effects than SPANR (HAL: R2 = 0.51; SPANR:

R2 = 0.17; Figure S6A). We made HAL publicly available

at http://splicing.cs.washington.edu. All of the code to repro-

duce this study is publicly available at https://github.com/

Alex-Rosenberg/cell-2015.

DISCUSSION

We present a framework based on massively parallel analysis of

synthetic sequences to dramatically improve our understanding
708 Cell 163, 698–711, October 22, 2015 ª2015 Elsevier Inc.
of alternative splicing and the ability to

predict the impact of natural human

genetic variation. Our model accurately

predicts the effects of sequence vari-

ants on alternative 50 splicing that occur

both within the alternative exon and in

the competing splice donors. Even more
importantly, our model learned regulatory rules about alterna-

tive splicing that generalized to exon skipping—a completely

different form of alternative splicing than those on which the

model was trained.

Our results suggest that a common regulatory mechanism is

shared between all major forms of alternative splicing. Additional

evidence for such a common mode of regulation comes from

previous smaller-scale studies of ESEs or ESSs that have shown

similar effects across different forms of alternative splicing

(Wang et al., 2006, 2012). It is unlikely that this shared form of

regulation occurs during splice site recognition; any exonic

splice regulatory element that alters splice donor or splice

acceptor recognition should have different effects in alternative

50 and 30 splicing events. It is more likely that alternative exon in-

clusion is modulated during exon definition, that is the pairing of

splice site across exons, which often precedes the eventual pair-

ing of splice donors and acceptors across introns (Robberson

et al., 1990).

Furthermore, our data also suggest that the exon-defining inter-

actions between the upstream splice acceptor and downstream

splice donor are regulated additively. In both alternative 50 and 30

splicing,we found the joint effect sizeofmultiple4-mer tobehighly

correlated with the sum of the individual 4-mer effects. This result

may indicate that eachsequencemotif cancontributeadditively to

stabilizing the splice acceptor-splice donor interaction, likely

through the trans-factors that bind these sites. However, the true

http://splicing.cs.washington.edu
https://github.com/Alex-Rosenberg/cell-2015
https://github.com/Alex-Rosenberg/cell-2015


mechanistic basis for this additivity will require further investiga-

tion. Although, there is evidence supporting specific examples of

functional interactions between cis-splicing regulatory elements

(Oberstrass et al., 2005), our results indicate that these examples

are likely uncommon.

A potential limitation of our approach is that mRNAs are tran-

scribed from plasmids rather than directly from the genome,

especially considering evidence suggesting that chromatin

can influence alternative splicing (Luco et al., 2010). However,

advances in high-throughput genome editing may make it

possible to perturb the genome in a massively parallel fashion,

whichwill enable extensions of our approach to probe the effects

of chromatin on alternative splicing. In fact, recent work demon-

strated that small-scale genomic libraries could be created

through insertion of degenerate sequences directly into an alter-

natively spliced gene locus (Findlay et al., 2014). Moreover, our

current work focused onmini-genes with short alternative exons,

and more work will be necessary to understand to which extent

our results generalize to other gene architectures. However,

human exons are typically short (an average 147 bp for internal

exons) (IHGSC et al., 2001), and,moreover, analysis of sequence

conservation suggests that most sequence determinants of

alternative splicing can be found within a few hundred nucleo-

tides of intron-exon junctions. It is important to emphasize that

our approach uncovers only cis-regulatory rules. Complemen-

tary experiments that connect this cis-grammar to a repertoire

of trans-acting splice factor proteins are necessary to fully un-

derstand themechanisms underlying the regulation of alternative

splicing.

We have demonstrated that learning the sequence determi-

nants of gene regulation from large libraries of synthetic se-

quences can be used as a complementary approach to learning

directly from the human genome. We assayed over two million

alternatively spliced constructs, nearly two orders of magnitude

more events than the 38,000 that are present in the human

genome (Wang et al., 2008), containing over 100 Mb of synthetic

sequence. Our improved understanding of alternative splicing

and performance in predicting the effects of genetic variants

is not a result of more sophisticated machine learning algorithms

but simply the result of learning from a larger and more reliable

dataset. We anticipate that this general approach will be

useful for advancing our biological understanding of diverse

forms of gene regulation, such as transcription, translation,

and polyadenylation.

EXPERIMENTAL PROCEDURES

Cloning of Degenerate Libraries

The libraries were assembled with PCR and standard Gibson assembly

(Gibson et al., 2009) using degenerate oligonucleotides (IDTDNA). First Citrine

was split into two exons, and the first exon of the Citrine gene was altered to

remove any potential splice donors, without altering the amino acid sequence.

The introns with degenerate sequences were inserted between the two exons

of Citrine. The barcode sequence was inserted into the 30 UTR of Citrine.

Cell Culture and Transfection

HEK293 cells were cultured in in DMEM (Cellgro) plus 10% FBS and L-gluta-

mine/penicillin/streptomycin on coated plates. Plates were coated for 24 hr

with 8 ml of 1003 diluted extracellular matrix gel (Sigma-Aldrich) before

HEK293 cells were added to the plates. For transfection of a complex pool
of plasmids, 1.2 million cells were seeded in a 10-cm dish 24 hr before trans-

fection. We mixed 10 mg of the plasmid library in 1 ml of Opti-MEM Reduced

Serum Medium (Life Technologies) with 30 ml of Lipofectamine LTX and

10 ml of Plus Reagent (Life Technologies), before transfecting into the 10-cm

dish. The DMEM was replaced 5 hr after transfection.

Isolation of RNA and Generation of cDNA

Total RNA was extracted using RNeasy (QIAGEN) kits 24 hr after transfection.

The optional on column DNaseI digest was performed with the RNase-Free

DNase Set (QIAGEN). Total RNA quality and purity was tested by measuring

the A260/A280 ratio on a NanoDrop 1000 Spectrophotometer and, in some

cases, by measuring the ratio of the 18S and 28S rRNA bands on a native

1% agarose gel. mRNA was separated from 35–48 mg total RNA using polyA

Spin mRNA Isolation Kits (New England Biolabs). Isolated mRNA was again

digested by DNaseI for 30 min using the Turbo DNA-free Kit (Ambion). cDNA

was then synthesized from 109–374 ngmRNA usingMultiScribe Reverse Tran-

scriptase (Ambion) and Oligo d(T)16 primers (Ambion). cDNA synthesis was

performed by holding reactions at 25�C for 10 min, 42�C for 110 min, and

85�C for 5 min. The quality of cDNA and presence of DNA contamination

were checked through qPCR:Citrine,mCherry, and TBPwere compared using

cDNA, no reverse transcription controls (NRTC), and a no template control

(NTC). The results indicated that there was no plasmid or genomic DNA carry-

over into the cDNA reactions.

Generation of Illumina FlowCell Compatible PCRProducts fromRNA

and DNA Library

The resultant cDNA was then amplified by PCR to generate products compat-

ible with the Illumina HiSeq2000 Flow Cell. PCR reactions were performed in

100 ml with 2x Phusion HFMaster Mix (New England Biolabs), 50 pmol forward

primer, and 50 pmol reverse primer with sample specific barcodes and 20% of

each cDNA reaction. Cycling was done on a BioRad T100 Thermal Cycler with

the following protocol: 98�C for 5 min, then seven cycles of 98�C for 10 s,

67.5�C for 15 s, 72�C for 30 s, and a final extension step at 72�C for 5 min.

The necessary number of cycles was determined for each sample by first

running qPCR reactions with EvaGreen in a Biorad CFX and determining

when fluorescence began to plateau. Following PCR, 10% of the products

were run on a 2% agarose gel to determine if the expected bands were pre-

sent. The remainder of the PCR products was purified using the QIAquick

PCR Purification Kit (QIAGEN) and eluted into 30 ml of EB. Concentrations,

as well as A260/280 and A260/230 ratios, were measured on a NanoDrop

1000 Spectrophotometer.

Illumina-compatible PCR products were also generated from the DNA

plasmid library with the same protocol as above, except the cDNA template

was replaced with 10 ng of plasmid library DNA and the PCR reaction was per-

formed with 20 cycles.

Sequencing Plasmid Library and RT-PCR Products

Both the RT-PCR products and plasmid library PCR products were

sequenced on either an Illumina HiSeq2000 or Illumina MiSeq with paired

end reads. The forward read crossed the post-splicing exon-exon junction

and the reverse read covered the 30 UTR barcode. A 6-nt index read was

used to sequence the sample barcode to determine if the read came from a

DNA library or a cDNA library.

Associating Degenerate Intronic Regions with 30 UTR Barcode Tags

Using the sequencing results of the DNA plasmid library, we first counted the

number of reads for every observed barcode and calculated an average Phred

quality score for each position. We discarded any barcode tags with less than

two reads or less than an average Phred score of 20 at any position. We then

mapped each remaining tag to the associated degenerate sequence with the

most reads. If each degenerate sequence had a single read, we chose the

sequence with the highest minimum Phred score.

Measuring Isoform Fractions from Sequencing Results

For every read on an RT-PCR product, we recorded the splicing position (or

lack of splicing) by aligning the read to the unspliced plasmid. Using the asso-

ciated barcode read, we were then able to tally the number of reads splicing
Cell 163, 698–711, October 22, 2015 ª2015 Elsevier Inc. 709



at each position for every plasmid in our library. With respect to the alternative

50 library, only reads that mapped to a splice donor with GT or GC in the +1

to +2 intronic positions were counted.
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