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Preface
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have decided to publish this book myself via a service called Createspace
that is part of Amazon. Over the years I’ve had many offers from publish-
ers to publish text books but have found the contracts they offer to be far
too restrictive. Two restrictions in particular stand out, the loss of copy-
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environment, the inability to rapidly update the text when either errors are
found or new material needs to be added. With today’s print on demand
technology there is no reason for these restrictions.
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must be my infinitely patient wife, Holly, who has put up with the many
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programmer, and Deepak Chandran (author of TinkerCell) who developed
a very deep understanding of how networks operate. I thank them for they
dedication and steadfast enthusiasm while they worked in my lab.
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Preface to Part I

The first few chapters provides a foundation for part II of the book which
is where we start to discuss metabolic control analysis. For those already
familiar with many of these topics Part I can be omitted. However, it does
emphasizes some important concepts which even seasoned practitioners
might be unaware of.



4



1
Cellular Networks

Figure 1.1 Types of Ciliates: From The Protozoa, Gary Nathan Calkins,
Macmillan, 1910

The study of cellular networks is one of the defining characteristics of
systems and synthetic biology. Such networks involve the coordinated in-
teraction of thousands of molecules that include nucleic acids, proteins,
metabolites and other small molecules. Descriptions of these elaborate

5



6 CHAPTER 1. CELLULAR NETWORKS

networks can be found in text books, on wall charts and more recently in
databases such as EcoCyc, RegulonDB, KEGG or STRING – Table 1.1.

1.1 Overall Organization

Biological networks can be organized into three broad groups (Fig. 1.5),
gene regulatory, protein and metabolic networks. In the metabolic group,
small molecules are chemically transformed by enzymes. These molecules
– or metabolites – serve either as energy sources or as building blocks for
more complex molecules, particularly polymers such as polysaccharides,
nucleic acids and proteins.

Table 1.1 Online E. coli resources

Online Resource URL

EcoCyc http://ecocyc.org/

RegulonDB http://regulondb.ccg.unam.mx/

KEGG http://www.genome.jp/kegg/

STRING http://string.embl.de/

The protein networks constitute a major part of the decision making and
nano-machine apparatus of a cell. We can divide the decision making pro-
tein networks into two subgroups. One subgroup involves transcription
factor proteins that regulate gene expression, forming what are called the
gene regulatory networks (GRNs). The second subgroup, constitutes the
signalling pathways that integrate information about the external and in-
ternal environment and modulate both the metabolic and gene regulatory
networks.

The metabolic, protein and gene regulatory networks each have a charac-
teristic mode of operation and differ by the molecular mechanisms em-
ployed and the operating time scales. In general metabolic networks op-
erate on the smallest time scale, followed by protein networks and gene
regulatory networks.

http://ecocyc.org/
http://regulondb.ccg.unam.mx/
http://www.genome.jp/kegg/
http://string.embl.de/


1.2. NETWORK REPRESENTATION 7

This picture is of course a simplified view, for example it omits the ex-
tensive RNA network that may be present particularly in eukaryotic cells
and protein signalling networks are involved in a variety of other related
functions including for example cytoskeleton control and cell cycle reg-
ulation. In addition, there is considerable overlap between the different
systems with the gene regulatory networks and protein control networks
interlinked [5].

1.2 Network Representation

There are different ways to represent cellular networks depending on how
the information will be used and what kinds of questions are asked. Tra-
ditionally cellular networks have been described using a stoichiometric
formalism. Such networks are mechanistic in nature, consistent with the
laws of mass conservation and will often include kinetic laws describing
transformations of species from one form to another through binding/un-
binding or molecular reorganization. In recent years an alternative repre-
sentation, which might be termed non-stoichiometric, has gained signif-
icant popularity with the advent of high-throughput data collection. Non-
stoichiometric networks, of which there are a great variety, include interac-
tion networks which describe the relationship, usually via some physical
interaction but sometimes also functional, between molecular species or
functional entities such as genes or proteins. Non-stoichiometric networks
are by their nature more course grained compared to stoichiometric net-
works but their study has proved to be very popular due in large part to the
availability of vast new data sources. That, coupled with the unprecedented
interest in networks in general has made the study of non-stoichiometric
networks an intellectually fruitful area of study.

In this book we will be primarily concerned with stoichiometric net-
works.
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1.3 Metabolic Networks

The first cellular networks to be discovered were the metabolic pathways
such as Glycolysis in the 1930s and the Calvin cycle in the 1940s. The
first metabolic pathways were elucidated by a combination of enzymatic
inhibitors and the use of radioisotopes such as Carbon-14. The Calvin cy-
cle for example was discovered by following the fate of carbon when algae
were exposed to 14C-labeled CO2. With the development of microbial ge-
netics significant progress was also made in uncovering other pathways by
studying mutants and complementing different mutants of a given pathway
to determine the order of steps. The reaction steps in a metabolic pathway
are catalysed by enzymes and we now know there are 1000s of enzymes
in a given organism catalyzing a great variety of pathways. The collective
sum of all reaction pathways in a cell is referred to as metabolism and the
small molecules that are interconverted are called the metabolites.

Traditionally, metabolism is classified into two groups, anabolic (synthe-
sis) and catabolic (breakdown) metabolism. Coupling between the two
metabolic groups is achieved through cofactors of which a great variety
exist although two widely distributed cofactors include the pyridine nu-
cleotides in the form of NADC and NADPC and the adenine nucleotides
in the form of ATP, ADP and AMP. These cofactors couple redox and phos-
phate respectively by forming reactive intermediates that enables catabolism
to drive anabolism. A primary catabolic process is cellular respiration
where starting molecules such as glucose are oxidized in a step wise fash-
ion. The energy released is captured in the form of ATP and the oxidized
product, water and carbon dioxide are released as waste. The ATP can
be used in turn to drive anabolic processes such as amino acid or lipid
biosynthesis. In general metabolic pathways tend to be regulated via al-
losteric regulation. This is where a metabolite can regulate the reaction
rate of an enzyme by binding to a site on the enzyme other than the cat-
alytic site. Such interactions form a network of feedback and feedforward
regulation. Figure 1.3 shows a metabolic pathway of glycolysis from Lac-
tococcus lactis. On the left, glucose enters the cell which is then converted
in a series of reactions to ethanol and a variety of other small molecules.

Metabolic networks are by far the fastest (excluding ion transfer mech-
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Networks

Non-
Stoichiometric Stoichiometric

Elementary Non-Elementary

Figure 1.2 Cellular networks are often represented using two common
ways, non-stoichiometric and stoichiometric. Non-stoichiometric net-
works are characterized by a lack of stoichiometric information and mass
conservation. Stoichiometric networks are classified according whether
they are elementary or not. Elementary networks are those where the re-
actions cannot be broken into simpler forms. Non-elementary networks
may have one or more reaction steps which represent an aggregate of two
or more elementary reactions, the aggregation being dependent on some
particular assumptions such as quasi-steady state or equilibrium.

anisms) in terms of their response to perturbations and can operate in a
time scale from microseconds to seconds. This reflects the need to rapidly
adjust the supply of molecular building blocks and energy as supply and
demand fluctuate. Physically the rapid response of metabolic networks is
achieved by allosteric control where the fast diffusion of small molecules
can bind and alter the activity of selected enzymes extremely rapidly.

Figure 1.4 shows a section of the glycolytic pathway which converts glu-
cose to pyruvate with the production of ATP and NADH. The diagram
also shows the many negative and positive feedback and feedforward reg-
ulatory loops in glycolysis. Not all of these are present in all organisms,
however many are. Note the six regulatory signals that converge on 6-
Phosphofructose-1-kinase (also known as phosphofructokinase) and Fruc-
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Figure 1.3 Metabolic Pathway: Metabolic pathway image from JWS on-
line (Jacky Snoep) with permission. The pathway depicts the glycolytic
pathway from Lactococcus lactis using the Systems Biology Graphical
Notation (SBGN) [52, 36]
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tose Bisphosphatase (Labelled 2 and 3). One of the aims of metabolic
control analysis is to quantify regulation and to understand the operational
principles of such control.

Glucose

Glucose 6-P

Fructose 6-P
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Figure 1.4 A section of glycolysis with negative and positive regulation
shown. 1. Hexokinase; 2. 6-Phosphofructose-1-kinase; 3. Fructose Bis-
phosphatase; 4. Pyruvate Kinase; 5. Entry to Citric Acid Cycle; 6. To
oxidative Respiration.
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Figure 1.5 Network Overview. The figure illustrates the three main net-
work layers, metabolic, protein and gene. TF – Transcription Factors

1.4 Protein Networks

Protein networks are by far the most varied networks found in biological
cells. They range from proteins involved in controlling gene expression,
the cell cycle, coordinating and processing signals from the external and
internal environments, to highly sophisticated nano-machines such as parts
of the ribosome or the bacterial flagella motor.

Protein networks can be studied on different levels, broadly classified as ei-
ther stoichiometric or non-stoichiometric networks. The non-stoichiometric
networks can be as simple as considering the physical associations be-
tween different proteins (often through the formation of protein complexes).
Such networks, also termed interaction networks, have been elucidated
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largely with the help of high-throughput methods. An interaction is formed
if two proteins, A and B are known to associate.

Another descriptive level involves functional and stoichiometric networks
formed from a consideration of specific stoichiometric binding events, co-
valent modification (most notably phosphorylation) and degradation. Here
two protein A and B might form a complex with a specific stoichiometric
relationship and with a specific association constant.

Protein-Protein Networks

Work on uncovering protein networks has be ongoing since the 1950s and
considerable detail has accumulated on many different pathways across
different organisms. Traditional methods, though laborious [18, 17] have
been used extensively to gain detailed knowledge on phosphorylation sites,
protein structure, the nature of membrane receptors and the constitution
and function of protein complexes. More recently high-throughput meth-
ods, though more course grained, have been used to elucidate large swaths
of protein-protein interaction networks. For example, in yeast, large scale
studies have identified approximately 500 different protein complexes [25,
50] and their relationships to each other.

A popular high-throughput technique that has been used to uncover protein-
protein interaction networks is the Yeast two-hybrid method [22, 64] but
other methods such as phage display [79, 29] and particularly affinity pu-
rification and mass spectrometry have also been employed [25, 50]. The
Yeast two-hybrid method (Figure 1.6) is based on the idea that eukaryotic
transcriptional activators consist of two domains, a DNA binding domain
(DB) and an activation domain (AD). The activation domain is responsible
for recruiting the RNA polymerase to begin transcription. What is remark-
able is that the two domains do not have to be covalently linked in order
to function correctly but merely need to be in close proximity. It is this
property that is the basis of the Yeast two-hybrid method.

Let us assume we wish to know whether two proteins, X and Y interact
with each other. In the two-hybrid method, protein X is fused with the
DB domain (known as the bait protein) and the second protein, Y, is fused
with the AD domain (known as the prey protein). These two fused proteins
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are now expressed in Yeast and if the two proteins, X and Y, interact in
some way they will also bring the DB and AD domains close to each other
resulting in an active transcriptional activator. If the gene downstream of
the DNA binding sequence is a reporter gene, then the interaction of X and
Y can be detected.

A common reporter gene is the lacZ gene which codes for ˇ-galactosidase
and which produces a blue coloring in Yeast colonies through the metabolism
of exogenously supplied X-gal (5-bromo-4-chloro-3-indolyl-ˇ-D-galact-
oside).

There are some caveats with the Yeast two-hybrid method. Although two
proteins may be observed to interact, the protein in their natural setting
may not be expressed at the same time or may be expressed but in differ-
ent compartments. In addition using the method to identify interactions
between non-yeast proteins may be invalid because of the alien environ-
ment in the yeast cell. As with many high-through-put methods caution is
advised when interpreting the data.

Using techniques such as Yeast two-hybrid, one of the first interaction
graphs to be published was the protein interaction graph of Saccharomyces
cerevisiae [83, 43]. Subsequent analysis of this map was conducted by
Jeong et al. [44] and included 1870 proteins nodes and 2240 interaction
edges. Such graphs give a birds-eye view of protein interactions (Fig. 1.7).

Signalling and Control Networks

Many protein-protein networks operate as signal processing networks and
are responsible for sensing external signals such as nutritional (for example
by changes in glucose levels) or cell to cell signals such as insulin. Other
signalling networks include control networks that are concerned with mon-
itoring and coordinating internal changes, the most well known of these
includes the cell cycle control network. Many external signals act by bind-
ing to cell-surface receptor proteins such as the large family of receptor
tyrosine kinases and G-protein coupled receptors [49]. Once a signal is in-
ternalized through the cell-surface receptors, other proteins, including pro-
tein kinases and phosphatases continue to process the signal often in coor-
dination with other signaling networks. Eventually the signalling pathway
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Figure 1.6 Yeast two-hybrid. The wild-type transcription fact is composed
of two domains, BD and AD. Both are essential for transcription. Two
fusion proteins are made, BD-Bait and AD-Prey. Bait and Prey are two
proteins under investigation. If the two protein, Bait and Prey interact
bringing BD and AD together resulting in a viable transcription fact that
can be used to express a reporter gene.

terminates on target proteins that leads to a change in the cell’s behavior.
Such targets can include a wide variety of processes such as metabolic
pathways, ion channels, cytoskeleton, motor proteins and gene regulatory
proteins.

The molecular mechanisms employed by signalling and control pathways
include covalent modification, degradation and complex formation. Co-
valent modification, in particular, is a common mechanism used in sig-
naling networks and includes a variety of different modifications such
as phosphorylation, acetylation, methylation, ubiquitylation, and possibly
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mathematical properties of random networks14. Their
much-investigated random network model assumes that
a fixed number of nodes are connected randomly to each
other (BOX 2). The most remarkable property of the model
is its ‘democratic’or uniform character, characterizing the
degree, or connectivity (k ; BOX 1), of the individual nodes.
Because, in the model, the links are placed randomly
among the nodes, it is expected that some nodes collect
only a few links whereas others collect many more. In a
random network, the nodes degrees follow a Poisson
distribution, which indicates that most nodes have
roughly the same number of links, approximately equal
to the network’s average degree, <k> (where <> denotes
the average); nodes that have significantly more or less
links than <k> are absent or very rare (BOX 2).

Despite its elegance, a series of recent findings indi-
cate that the random network model cannot explain
the topological properties of real networks. The 
deviations from the random model have several key
signatures, the most striking being the finding that, in
contrast to the Poisson degree distribution, for many
social and technological networks the number of nodes
with a given degree follows a power law. That is, the
probability that a chosen node has exactly k links 
follows P(k) ~ k –γ, where γ is the degree exponent, with
its value for most networks being between 2 and 3 
(REF. 15). Networks that are characterized by a power-law
degree distribution are highly non-uniform, most of
the nodes have only a few links. A few nodes with a very
large number of links, which are often called hubs, hold
these nodes together. Networks with a power degree
distribution are called scale-free15, a name that is rooted
in statistical physics literature. It indicates the absence
of a typical node in the network (one that could be
used to characterize the rest of the nodes). This is in
strong contrast to random networks, for which the
degree of all nodes is in the vicinity of the average
degree, which could be considered typical. However,
scale-free networks could easily be called scale-rich as
well, as their main feature is the coexistence of nodes of
widely different degrees (scales), from nodes with one
or two links to major hubs.

Cellular networks are scale-free. An important develop-
ment in our understanding of the cellular network
architecture was the finding that most networks within
the cell approximate a scale-free topology. The first evi-
dence came from the analysis of metabolism, in which
the nodes are metabolites and the links represent
enzyme-catalysed biochemical reactions (FIG. 1).As many
of the reactions are irreversible, metabolic networks are
directed. So, for each metabolite an ‘in’ and an ‘out’
degree (BOX 1) can be assigned that denotes the number
of reactions that produce or consume it, respectively.
The analysis of the metabolic networks of 43 different
organisms from all three domains of life (eukaryotes,
bacteria, and archaea) indicates that the cellular metabo-
lism has a scale-free topology, in which most metabolic
substrates participate in only one or two reactions, but a
few, such as pyruvate or coenzyme A, participate in
dozens and function as metabolic hubs16,17.

Depending on the nature of the interactions, net-
works can be directed or undirected. In directed
networks, the interaction between any two nodes has a
well-defined direction, which represents, for example,
the direction of material flow from a substrate to a
product in a metabolic reaction, or the direction of
information flow from a transcription factor to the gene
that it regulates. In undirected networks, the links do
not have an assigned direction. For example, in protein
interaction networks (FIG. 2) a link represents a mutual
binding relationship: if protein A binds to protein B,
then protein B also binds to protein A.

Architectural features of cellular networks
From random to scale-free networks. Probably the most
important discovery of network theory was the realiza-
tion that despite the remarkable diversity of networks
in nature, their architecture is governed by a few simple
principles that are common to most networks of major
scientific and technological interest9,10. For decades
graph theory — the field of mathematics that deals
with the mathematical foundations of networks —
modelled complex networks either as regular objects,
such as a square or a diamond lattice, or as completely
random network13. This approach was rooted in the
influential work of two mathematicians, Paul Erdös,
and Alfréd Rényi, who in 1960 initiated the study of the

Figure 2 | Yeast protein interaction network. A map of protein–protein interactions18 in
Saccharomyces cerevisiae, which is based on early yeast two-hybrid measurements23, illustrates
that a few highly connected nodes (which are also known as hubs) hold the network together.
The largest cluster, which contains ~78% of all proteins, is shown. The colour of a node indicates
the phenotypic effect of removing the corresponding protein (red = lethal, green = non-lethal,
orange = slow growth, yellow = unknown). Reproduced with permission from REF. 18 ©
Macmillan Magazines Ltd.

Figure 1.7 The poster child of interaction networks, one of the early Yeast
protein interaction networks generated from yeast two-hybrid measure-
ments. Each node represents a protein and each edge an interaction. In
addition the graph nodes have been annotated so that red nodes indicate
lethal phenotypic effect if removed, green non-lethal, orange slow growth
and yellow unknown. Adapted from Barabási and Oltvai [4] but originally
published in arXiv and Nature [44]

others [8]. As a result the structure and computational abilities [74] of
such networks is likely to be extremely elaborate. It has been estimated
from experimental studies that in E. coli, 79 proteins can be phosphory-
lated [54] on serine, threonine and tyrosine side groups whereas in Yeast,
4000 phosphorylation events involving 1,325 different proteins have been
recorded [65].

The cell cycle control network is an excellent example of a sophisticated
protein control network that coordinates the replication of a biological cell.
The cell cycle includes a number of common molecular mechanisms that
are found in many other protein networks. These mechanisms can be
grouped into three broad types, they include, phosphorylation, degrada-
tion and complex formation. Phosphorylation is a common mechanism for
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changing the state of a protein and involves phosphorylation on a num-
ber of sites on the protein surface including serine/threonine and tyrosine.
In prokaryotes, histidine, arginine or lysine can also be phosphorylated.
Phosphorylation is mediated by kinases. For example the Human genome
may have over 500 kinase encoding genes [55]. The effect of phospho-
rylation is varied but generally it causes the protein undergoing phospho-
rylation to change catalytic activity, to change the protein’s ‘visibility’ to
other proteins or to mark the protein for degradation. For example, src is a
tyrosine kinase protein involved in cell growth. It has two states, active and
inactive; when active it has the capacity to phosphorylate other proteins.
Deactivation of src is achieved by phosphorylation of a tyrosine group on
the C-terminal end of the protein. Dephoshorylation of the tyrosine group
by tyrosine phosphatases results in the activation of the protein.

Phosphorylation can also be used to inactivate enzymes such as glycogen
synthase by the glycogen synthase kinase 3 protein. In the Yeast cell cy-
cle, the protein Wee1 is phosphorylated and inactivated by the complex
Cdc2-Cdc13. Active Wee1 in turn (that is the unphosphorylated form) can
inactivate Cdc2-Cdc13 by phosphorylating the Cdc2 subunit.

In addition to changing the activity of proteins, phosphorylation can also
be used to mark proteins for degradation. For example, the protein Rum1
that is part of the Yeast cell cycle control network can be phosphorylated
by Cdc2-Cdc13. Once phosphorylated, Rum1 is degraded. Degradation
itself is an important mechanism used in protein networks and allows pro-
teins to be rapidly removed from a network according to the state of the
cell. Degradation is usually mediated by ubiquitylation. For example,
Cdc2-Cdc13, via Ste9 and APC is marked for degradation by ubiquityla-
tion (Rum1 is similarly processed once phosphorylated). Once marked this
way, such proteins can bind to the proteasome where they are degraded.
Finally, binding of one protein to another can change the target protein’s
activity or visibility. An example of this is the inactivation of Cdc2-Cdc13
by Rum1. When unphosphorylated Rum1 binds to Cdc2-Cdc13, the re-
sulting complex is inactive.

Different combinations of these basic mechanisms are also employed. For
example, phosphorylation of complexes can lead to the dissociation of
the complex, or the full activity of a protein requires multiple phospho-
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rylation events. Although signalling networks can appear highly complex
and varied, most of them can be reduced to the three fundamental mecha-
nisms, covalent modification, selective degradation and complex formation
(Fig 1.8).

These examples highlight fundamental mechanisms by which protein con-
trol networks can be assembled into sophisticated decision making sys-
tems.

P
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U U U U

Complex Formation

Phosphorylation

Dephosphorylation

Degradation of a 
complex

U U U U
Degradation of a 

phoshporylated form

Figure 1.8 Fundamental Protein Mechanisms

In higher eukaryotic cells, particulary human, around 2% of the protein-
coding part of the genome is devoted to encoding protein kinases, with
perhaps 10% of the coding region dedicated to proteins involved in sig-
nalling networks. It has also been suggested that possibly as much as 30%
of all cellular proteins in yeast and human can be phosphorylated [14].

The actual size of the networks themselves is however even larger that
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these numbers suggest because of the significant number of covalent vari-
ants and binding permutations. For example, p53, the tumor suppres-
sor protein, has between 17 and 20 phosphorylation sites alone [82]. If
every combination were phenotypically significant, though unlikely, that
amounts to at least 131,072 different states.

Ptacek and Snyder [66] have published a review on elucidating phospho-
rylation networks where much more detailed information is given.

Figure 1.9 A Small Protein-Protein Interaction Map. This image was
taken from the STRING web site (Search Tool for the Retrieval of Inter-
acting Genes/Proteins, http://string.embl.de/). The image displays
a small segment of the protein interaction map centered around LEU3,
the transcription factor that regulates genes involved in leucine and other
branched chain amino acid biosynthesis.

http://string.embl.de/
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1.5 Gene Regulatory Networks

At least in prokaryotes, the control of gene expression is relatively well un-
derstood. Transcription factors control gene expression by binding to spe-
cial upstream DNA sequences called operator sites. Such binding results
in the activation or inhibition of gene transcription. Multiple transcription
factors can also interact to control the expression of a single gene. Such in-
teractions can emulate simple logical functions (such as AND, OR etc.) or
more elaborate computations. Gene regulatory networks can range from a
single controlled gene to hundreds of genes interlinked with transcription
factors forming a complex decision making circuit. Different classes of
transcription factors exist, for example the binding of some transcription
factors to operators sites is modulated by small molecules, the classical
example being the binding of allolactose (a disaccharide very similar to
lactose) to the lac repressor or cAMP to the catabolite activator protein
(CAP). Alternatively a transcription factor may be expressed by one gene
and either directly modulate a second gene (which could be its own gene)
or via other transcription factors integrate multiple signals on to another
gene. Additionally, some transcription factors only become active when
phosphorylated or unphosphorylated by protein kinases and phosphatases.
Like protein signaling and control networks, gene regulatory networks can
be elaborate, structurally and computationally.

Significant advances have been made in developing high-throughput meth-
ods that can be used to determine protein-gene networks. Of particular in-
terest are ChIP-chip [68, 2] and the more recently developed ChIP-seq [56]
screening method – Chromatin immunoprecipitation microarray/Sequen-
cing. ChIP works by treating cells with formaldehyde which crosslinks
the DNA to the transcription binding protein if it is bound to the DNA.
The cells are then lysed and the DNA fragmented into small 1 kB or
less fragments. A specific antibody is now required that will bind to the
DNA-binding protein of interest and precipitate the protein and associated
DNA fragment. The precipitated DNA pieces are released by reversing the
crosslinking. In ChIP-chip, the released DNA pieces are hybridized to a
microarray that enables the bound protein to be located on the Genome.
A more recent version that is gaining popularity is ChIP-seq. In this pro-
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Figure 1.10 Simple gene regulatory patterns

cedure the microarray stage is abandoned and instead the released DNA
pieces are sequenced. Once sequenced the location on the Genome can be
determined. These methods have been successfully used to determine the
gene-protein network of a number of organisms, with Yeast being one of
the first [53]. Alternatively other approaches have focused on determining
gene-protein networks from literature mining and careful curation or even
prediction of putative binding sites.

In general gene regulatory networks are the slowest responding networks
in a cell and work from minutes to hours depending on the organism, with
bacterial gene regulatory networks tending to operate more rapidly.

The most extensive database on a gene regulatory network is Regulon-
DB [42, 24] which is a database on the gene regulatory network of E. coli.
Reviews that cover in more detail the structure of regulatory networks can
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Figure 1.11 ChIP-chip and ChIP-seq methods for determining transcrip-
tional binding sites. Adapted from [56].
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be found in the works of Alon [77] and Seshasayee [76].

Although the description of the three main network types may give the
impression that they act independently of each other this is most definitely
not the case. In general, the different networks will often act together. For
example, Figure 1.12 shows a small example taken from Caulobacter [10]
showing a mixed gene regulatory and protein network.

Figure 1.12 Example of a mixed network involving gene regulatory and
protein phosphorylation networks in Caulobacter. Blunt ends to regulatory
arcs indicate inhibition while arrow ends indicate activation. Image from
BioMed Central [10].

1.6 Genome Sizes

How big are cellular networks? To answer that we can look at whole
genomes. The sizes of genomes vary considerable from the minuscule
159,662 bases of the symbiotic bacterium called Carsonella ruddii, which
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lives off sap-feeding insects, to the Whisk fern with 2:5�1011 bases. Some
of this size difference is related to the complexity of the organism, simpler
organisms requiring fewer genes. However the correlation, although pos-
itive is not entirely linear. For example E. Coli has roughly 4,300 genes
on a genome of size 4.6 Mb, while humans have roughly 25,000 genes
on a genome of about 3000 Mb. The E. Coli genome is quite dense with
roughly 88% of the genome coding for proteins [81] with the remainder
being made up of RNA coding, promoter sequences and so on. The human
genome on the other hand is very sparse with only about 2% of the genome
actually coding for protein. There is ongoing speculation as to why the hu-
man genome is so sparse and what the role of the other 98% might be.
Some evidence suggests an extensive RNA based regulatory network [58]
that is coded in at least some of the non-coding sequences (the so-called
junk DNA).

Figure 1.13 shows an example of a small genome from Mycoplasma gen-
italium. This organism is a small parasitic bacteria that lives in primate
genital and respiratory tracts and is the smallest known free-living bacte-
ria. The genome of this organism has 521 genes in total, 482 or these code
for protein with the remaining 39 reading frames coding for tRNA and
rRNA.

The 482 genes that encode proteins in Mycoplasma genitalium include a
wide variety of functions (Figure 1.14) that cover areas such as energy
metabolism, replication and the cell envelope. Even for such a small or-
ganism there are still eight genes of unknown function.

Eukaryotic genes, especially Human, are also fragmented into segments
called exons (coding) and introns (non-coding). This segmentation allows
different forms of protein to be derived from the same gene by splicing
together different exons. Although the apparent number of genes is of the
order of 25,000, alternative splicing probably increases this number sig-
nificantly [9, 86]. Finally, many proteins, particularly those involved in
signalling pathways also have alternative forms due to covalent modifica-
tion via for example phosphorylation or methylation. This again increases
the actual number of states. In others words the number of genes in a
genome gives a lower limit to the size of a cellular network, particularly
in eukaryotic organisms. The size of a given genome is therefore a poor
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Figure 1.13 Small genome with 521 genes from Mycoplasma genitalium.
Image taken from BioCyc.

indicator of how complex the organism might be. To give a better idea of
the size and complexity of a small genome let us look more closely at a
specific one, E. coli.

1.7 E. coli

The bacterium E. coli is probably one the best understood organisms and it
is worth considering some of its features in detail. Much of the information
provided here comes from the EcoCyc and RegulonDB online databases
and their publications [47, 24].

E. coli is roughly a cylindrical body, with a length of about 2�m and diam-
eter of about 0:8�m. This gives us a volume of approximately 1 � 10�15

L. If one molecule is present in this volume this represents one molecule
per 1 � 10�15 L. That is in 1 L we will have 1 � 1015 molecules which in
terms of moles will be 1 � 1015=6:022 � 1023 ' 1 � 10�9 moles = 1 nM.
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Figure 1.14 1: cell Envelope; 2: Regulatory; 3: Unknown; 4: Central
Metabolism; 5: Cofactor Biosynthesis; 6: Purine/Pyrumdine metabolism;
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This means these dimensions offer a convenient translation between con-
centration and number of molecules in E. coli. 1 nM concentration roughly
translates to one molecule per E. coli cell (See exercises at end of chapter).
For example, ATP is present at a concentration of approximately 2 mM,
this means there are roughly 2,000,000 molecules of ATP in a single E.
coli cell. Another calculation we can do is estimate the maximum number
of proteins that can be packed into a single E. coli cell. If we assume that
of a protein is approximated by a cube of side length 5 nm then the volume
of a single protein in units of L (dm3) is .5� 10�9 � 10/3 D 1:25� 10�22

L. In a volume of 1 � 10�15 L we can therefore fit a maximum of 8 � 106

proteins. In reality the number will be less than this because other compo-
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Table 1.2 A comparison of genome sizes (base pairs) and estimated num-
ber of genes. Data from Taft and Mattick [81]

Organism Genome Size Est. Number of Genes

E. coli 4,639,221 4,316
Bacillus subtilis 4,214,810 4,100
Saccharomyces cerevisiae 12,100,000 6,000
Caenorhabditis elegans 97,000,000 19,049
Arabidopsis thaliana 115,409,949 25,000
Drosophila melanogaster 120,000,000 13,600
Mus musculus 2,500,000,000 37,000
Homo sapiens 3,000,000,000 30,000

nents such as water, metabolites and nucleic acids much also have space to
occupy.

The E. coli genome is composed of 4,639,221 base pairs (490�m in diam-
eter) encoding at least 4472 genes. Of this number, 4316 code for proteins,
with the remainder coding for various RNA products such as tRNAs and
rRNAs. The genes in E. coli, like other prokaryotes, do not have seg-
mented genes (genes made of introns and exons); that is a gene in E. coli
is contiguous sequence of DNA translated into the final protein without
editing. In addition there is very little non-coding DNA in E. coli with
almost 88% of the genome coding for proteins.

Almost one quarter of all proteins produced by gene expression in E. coli
form multimers, that is proteins composed of multiple subunits. Many
of these multimers are homomultimers, that is they are made up of the
same subunits. Some of these proteins can also be covalently modified by
phosphorylation, methylation and other means. There are estimated to be
at least 171 transcription factors, that is proteins that directly control gene
expression. This number gives some idea of the size of the gene regulatory
network. The EcoCyc database reports at least 48 small molecules and
ions that can regulate transcription factors.

Of the 4316 genes in E. coli, 3384 (76%) have been assigned a biochem-
ical function. There are at least 991 genes that are involved in encoding
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Figure 1.15 Artists impression (With permission Goodsell) of a cross-
section through E. Coli illustrating the high density of proteins and other
molecules in the the cytoplasm.

proteins involved directly in metabolism with a further 355 genes involved
in transport. Other gene functions include DNA replication, recombina-
tion and repair, protein folding, transcription, translation and regulatory
proteins. An inventory of small molecules has not been thoroughly made
but EcoCyc records at least 1352 unique small organic molecules which is
probably a significant underestimate.

These statistics suggest large numbers of interactions among many thou-
sands of cellular components forming extensive networks.

Given the size of a single E. Coli cell, the concentration of protein in the
cytoplasm and the average diameter of a protein (5 nm), it is estimated
that the average spacing (center to center) between proteins is about 7 nm.
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This means that the cytoplasm is quite dense. David Goodsell (http://
mgl.scripps.edu/people/goodsell) is well known for his evocative
illustrations of subcellular spaces. Figure 1.15 illustrates his rendition of a
cross-section through E. Coli.

Property Dimensions

Length 2 to 3 �m
Diameter ' 1�m
Volume 1 � 10�15 L
Optimal generation time 20 to 30 mins
Translation rate 40 amino acids per sec
Transcription rate 70 nucleotides per sec
Number of ribosomes per cell 18,000
Average protein diameter 5 nm
Average concentration of protein 5-8 mM
Average number of proteins 3,600,000

Table 1.3 Basic Information on E. coli

There are two useful sites for obtaining basic operating information on E.
Coli. The first site is the E. Coli. statistics site at Project CyberCell (http:
//gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi). The oth-
er is a more generic and community based web site called BIONUMBRS
(The Database of Useful Biological Numbers). Publications from the Eco-
Cyc project also supply many useful statistics on E. Coli [47, 48].

The number of molecules in a typical E. coli varies with the molecule
type. For example there are approximately 2,000,000 Na ions while only
300,000 tryptophan molecules. The larger the molecule the fewer their
number, Table 1.4. For example transcription factors are only present in
numbers ranging from 10s to 100s, whereas ions are present in the mil-
lions.

A major study by Bennett et al (Rabinowitz et al. Nature Chemical Biol-
ogy (2009)) measured over 100 metabolites levels in the main metabolic
pathways of glucose-fed, exponentially growing E. coli. The average con-
centration was found to be 0.22 mM. We can compare this with the av-

http://mgl.scripps.edu/people/goodsell
http://mgl.scripps.edu/people/goodsell
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
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Molecule Estimated Number

Ions Millions
Small Molecules 10,000 - 100,000
Metabolic Enzymes 1000 - 10,000s
Signaling Molecules 100 - 1000s
Transcription factors 10s to 100s
DNA 1 - 10s

Table 1.4 Orders of magnitude for various molecule types.

erage Km (concentration of substrate that gives half maximal activity) of
approximately 0.1 mM as reported by the BRENDA database. This sug-
gests that on average enzymes operate above their half maximal activity.
However, a more detailed analysis revealed considerable variability among
different metabolite types. For example, cofactors such as ATP and NAD+,
were at concentrations significantly above theirKms . In contrast substrate-
enzyme pairs where the concentration was below the Km were dominated
by enzymes catalyzing nucleotide, nucleoside, nucleobase and amino acid
degradation reactions. On the other hand the glycolytic pathway, the tricar-
boxylic acid cycle and the pentose-phosphate pathways showed substrate
concentration that were similar to their Km value.

We can also consider how fast processes occur in E. coli. As suggested ear-
lier in the chapter, metabolic responses are the fastest followed by protein
signaling networks and gene regulatory networks.

Table 1.7 lists some estimated response times for various biological pro-
cesses.

The number of molecules and the rate of various processes gives some idea
of the magnitude of systems we are dealing with. However, the economy
of a typical cell, how ATP is distributed to different processes and how
supply and demand are maintained is largely not understood since many
of these processes are difficult to measure. Moreover there is no economic
theory that describes the life of a cell.



1.7. E. COLI 31

Ions Estimated Numbers

Na 3,000,000
Ca 2,300,000
Fe 7,000,000

Small Molecules Estimated Numbers

Alanine 350,000
Pyruvate 370,000
ATP 2,000,000
ADP 70,000
NADP 240,000

Table 1.5 Some statistics on estimated numbers of small molecules in E.
coli

Further Reading

General

1. Bray D (2011) Wetware: A Computer in Every Living Cell. Yale
University Press. ISBN: 978-0300167849

2. Goodsell D S (2009) The machinery of life. Springer, 2nd edition.
ISBN 978-0387849249

3. Phillips R, Kondev J and Theriot J (2010) Physical Biology of the
Cell. Garland Science. ISBN 978-0-8153-4163-5

Specific

1. Nelson DL and Cox MM (2008) Wetware: Lehninger Principles of
Biochemistry. W. H. Freeman; 5th edition. ISBN: 978-0716771081

2. Hartl DL (2008) Genetics: Analysis Of Genes And Genomes. Jones
& Bartlett Learning; 7 edition. ISBN: 978-0763772154
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Signaling Proteins Estimated Numbers

LacI 10 to 50
CheA kinase 4,500
CheB 240
CheY 8,200
Chemoreceptors 15,000

Metabolic Enzymes Estimated Numbers

Phosphofructokinase 1,550
Pyruvate Kinase 11,000
Enolase 55,800
Phosphoglycerate kinase 124,000
Malate Dehydrogenase 3,390
Citrate Synthase 1,360
Aconitase 1630

Table 1.6 Some statistics on estimated numbers of larger molecules in E.
coli

3. Brown TA (2006) Genomes 3, Garland Science; 3 edition. ISBN:
978-0815341383

4. Alberts et al, (2002) General Principles of Cell Communication http:
//www.ncbi.nlm.nih.gov/books/NBK26813/

5. Hancock J (2010) Cell Signalling, Oxford University Press, 3rd edi-
tion, ISBN: 978-0199232109

6. Salway JG (2004) Metabolism at a Glance, Wiley-Blackwell; 3 edi-
tion ISBN: 978-1405107167

7. Gerhard M and Schomburg D (2012) Biochemical Pathways: An At-
las of Biochemistry and Molecular Biology, Wiley; 2 edition, ISBN:
978-0470146842

http://www.ncbi.nlm.nih.gov/books/NBK26813/
http://www.ncbi.nlm.nih.gov/books/NBK26813/
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Process Rate

Cell Division Time 50 minutes
Rate of Replication 2000 bp/s
Protein Synthesis 1000 proteins/s
Lipid Synthesis 20,000 lipids/s
Ribosome Rates 25 amino acids per sec per ribosome
Number of ATP to make one cell 55 billion ATPs

Table 1.7 E. coli grown on minimal media plus Glucose. Data from
Phillips et al (2010) and E. coli stats reference: http://ccdb.wishartlab.com

Exercises

In the following exercises, use the data given in the main text, and
Tables 1.3, 1.4, 1.5, and 1.6.

1. How many E. coli cells laid end to end would fit across the full stop
at the end of this sentence? Assume a diameter of the full stop to be
0.5 mm.

2. Estimate the volume of an E. coli cell.

3. Calculate the surface area of an E. coli cell. If a typical membrane
protein is 5 nm in diameter, estimate the number of membrane pro-
teins that can be laid out on the membrane if the center-center dis-
tance between each protein is 6 nm.

4. Show that a 1 nM concentration is roughly equivalent to 1 molecule
in a volume of one E. coli cell.

5. Estimate the number of protein molecules a typical E. coli cell can
make per second if one assumes that the average protein is 360
amino acids long. Assume that the number of proteins in a cell is
3,000,000. How long would it take to make 3,000,000 proteins?
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6. If it takes 1,500 ATP molecules to make an average protein how long
would it take before all the ATP is used up? Assume the ATP is not
being replaced.

7. What are the visual symbols that are often used to represent activa-
tion and repression?

8. Draw a similar diagram to the glycolysis regulatory diagram (Fig-
ure 1.4) but for the lysine, threonine and methionine biosynthesis
pathway from E. coli
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Stoichiometric Networks

2.1 Mass-Balance Equations

Consider a simple network comprising two reactions, v1 and v2, with a
common species, S . We will assume that the first reaction, v1 produces S
and the second reaction, v2, consumes S (Figure 2.1).

v1
S

v2

Figure 2.1 Simple Two Step Pathway.

According to the law of conservation of mass, any observed change in the
amount of species, S must be due to the difference between the inward
rate, v1 and outward rate, v2. That is, the change in S will be given by the
difference in the two rates, leading to the differential equation:

dS

dt
D v1 � v2: (2.1)

The above equation is called a mass-balance equation. Often S will be
expressed in concentration (mol l�1) but it is mass that is conserved not

35
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concentration. We can reexpress equation 2.1 as:

dSa

dt

1

V
D v1 � v2

where Sa is the amount of S in moles and V is the volume. Alternatively
we can write:

dSa

dt
D V.v1 � v2/

This assumes that the reaction rates are expressed in mol l�1 t�1. Often
models assume a constant unit volume so that numerically:

dS

dt
D
dSa

dt

and this will be the case is all the examples in this chapter. Although we
will write the rate of change in terms of concentration, it is implied that we
are dealing with a constant unit volume so that the change in concentration
is the same as the change in amount. If movement is from one compart-
ment to a compartment with a different volume then it is necessary to factor
in the volume difference and express the rate of change in amounts.

For more complex systems such as the one shown in Figure 2.2 where there
are multiple inflows and outflows, the mass-balance equation is given by:

SiInflows Outflows

dSi=dt D
P

Inflow �
P

Outflows

Figure 2.2 Mass Balance: The rate of change in species Si is equal to the
difference between the sum of the inflows and the sum of the outflows

dSi

dt
D

X
Inflows �

X
Outflows (2.2)

For
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an even more general representation, we can write the mass-balance equa-
tions by taking into account the stoichiometric coefficients. The rate at
which a given reaction, vj contributes to change in a species, Si is given
by the stoichiometric coefficient of the species, Si with respect to the re-
action, cij , multiplied by the reaction rate, vj (See equation A.1). That is,
a reaction j contributes, cij vj rate of change in species Si . For a species,
Si with multiple reactions producing and consuming Si , the mass-balance
equation (assuming constant unit volume) is given by:

dSi

dt
D

X
j

cij vj (2.3)

where cij is the stoichiometric coefficient for species i with respect to re-
action, j . For reactions that consume a species, the stoichiometric coeffi-
cient is often negative otherwise the stoichiometric coefficient is positive
(See Appendix A). In considering the simple example in Figure 2.1, the
stoichiometric coefficient for S with respect to v1 is C1 and for v2 is �1.
That is

dS

dt
D cs1v1 C cs2v2

or

dS

dt
D .C1/v1 C .�1/v2 D v1 � v2

The way in which the construction of the mass-balance equation is de-
scribed may seem overly formal, however the formality allows software
to be written that can automatically convert network diagrams into mass-
balance differential equations.

Example 2.1

Consider a linear chain of reactants from S1 to S5 shown in Figure 2.3. Write out
the mass-balance equations for this simple system.
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S1 S2 S3 S4 S5
v1 v2 v3 v4

Figure 2.3 Simple Straight Chain Pathway.

dS1

dt
D �v1

dS2

dt
D v1 � v2

dS3

dt
D v2 � v3

dS4

dt
D v3 � v4

dS5

dt
D v4 (2.4)

Each species in the network is assigned a mass-balance equation which accounts
for the flows into and out of the species pool.

Example 2.2

Write out the mass-balance equation for the following branched system:

S1

S2

v1

v2

v3

v4

v5

Figure 2.4 Multi-Branched Pathway.
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The mass-balance equations are given by:

dS1

dt
D v1 � v2 � v3

dS2

dt
D v3 � v4 � v5

Example 2.3

Write out the mass-balance equation for the more complex pathway:

ACX
v1
�! 2X

X C Y
v2
�! Z

Z
v3
�! Y C B

This example is more subtle because we must be careful to take into account the
stoichiometry change between the reactant and product side in the first reaction
(v1). In reaction v1, the stoichiometric coefficient for X is C1 because two X
molecules are made for every one consumed. Taking this into account the rate of
change of species X can be written as:

dX

dt
D �v1 C 2v1 � v2

or more simply as v1 � v2. The full set of mass-balance equations can therefore
be written as:

dA

dt
D �v1

dX

dt
D v1 � v2

dY

dt
D v3 � v2

dZ

dt
D v2 � v3

dB

dt
D v3

The last example (2.3) illustrates a very important aspect of converting a
network diagram into a set of differential equations. The process is poten-
tially lossy. That is, it is not always possible to fully recover the original
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network diagram from the set of derived differential equations. This is be-
cause in one or more of the reactions the stoichiometries may cancel out.
In the example (2.3) the reaction, AC X �! 2X is not recoverable from
the final set of differential equations. Instead if we reverse engineered the
differential equations the first reaction would be:

A! X

which is not like the original. This is not perhaps a common occurrence al-
though in protein signaling pathways it might be more common than other
kinds of networks. What it means however is that sharing models by ex-
changing differential equations is not recommended. This is one reason
why standard exchange formats such as SBML [41] store models explic-
itly as a set of reactions not as a set of differential equations. Many mod-
els are exchanged using Matlab which means that much of the biological
information, particularly information on the underlining network, is lost.
Exchanging models via computer languages such as Matlab is therefore
not recommended.

Example 2.4

Write out the mass-balance equation for pathway:

S1 C S3
v1
�! S2

2S2
v2
�! S3

S3
v3
�! 3S4

In this example we have non-unity stoichiometries in the second and third reaction
steps. The mass-balance equations are given by:

dS1

dt
D �v1

dS2

dt
D v1 � 2v2

dS3

dt
D v2 � v3

dS4

dt
D 3v3
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From the previous examples we can see that it is fairly straight forward
to derive the balance equations from a visual inspection of the network.
Many software tools exist that will assist in this effort by converting net-
work diagrams, either represented visually on a computer screen (for ex-
ample, JDesigner) or by processing a text file that lists the reactions in the
network (for example via Jarnac) into a set of differential equations (See
Appendix ??).

2.2 Stoichiometry Matrix

When describing multiple reactions in a network, it is convenient to repre-
sent the stoichiometries in a compact form called the stoichiometry ma-
trix, traditionally denoted by N, where the symbol N refers to number1.
The stoichiometry matrix is a m row by n column matrix where m is the
number of species and n the number of reactions:

N D m � n matrix

The columns of the stoichiometry matrix correspond to the individual chem-
ical reactions in the network, the rows to the molecular species, one row
per species. Thus the intersection of a row and column in the matrix in-
dicates whether a certain species takes part in a particular reaction or not,
and, according to the sign of the element, whether there is a net loss or gain
of substance, and by the magnitude, the relative quantity of substance that
takes part in that reaction. That is the elements of the stoichiometry matrix
do not concern themselves with the rate of reaction. This latter point is
particular important when we will consider in a later chapter the various
stoichiometric analyses that can be carried out purely on the stoichiometry
without any reference to reaction rate laws.

The stoichiometric matrix is not concerned with describing the reaction
rates. Reaction rates are given by the rate laws which is a separate
vector (See section 2.5).

1Some recent flux balance literature uses the symbol S
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In general the stoichiometry matrix has the form:

N D

?

Si

6

� vj -2664
cij : : : : : :
:::
:::

3775
where cij is the stoichiometry coefficient for the i th species and j th re-
action. As was mentioned before the stoichiometry matrix is in general
a lossy representation. That is, it is not always possible to revert back to
the original biochemical network from which the matrix was derived. For
example consider the simple stoichiometry matrix:

N D

24�1 0

1 �1

0 1

35
The most obvious network that this matrix could have been derived from
is:

A �! B

B �! C

But equally plausible is this network:

2A �! AC B

B �! C

If is not possible from the stoichiometry matrix alone to determine which
was the original network.

Example 2.5

Write out the stoichiometry matrix for the simple chain of reactions which has
five molecular species and four reactions as shown below. The four reactions are
labeled, v1 to v4.
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S1 S2 S3 S4 S5
v1 v2 v3 v4

The stoichiometry matrix for this simple system is given by:

N D

v1 v2 v3 v4266664
�1 0 0 0

1 �1 0 0

0 1 �1 0

0 0 1 �1

0 0 0 1

377775
S1
S2
S3
S4
S5

The rows and columns of the matrix have been labeled for convenience. Normally
the labels are absent.

Example 2.6

Write out the stoichiometry matrix for the multibranched pathway shown in Fig-
ure 11.5

N D

v1 v2 v3 v4 v5�
1 �1 �1 0 0

0 0 1 �1 �1

�
S1
S2

2.3 Reversiblity

Up to this point nothing has been said about whether a given reaction is
reversible or not. When dealing with kinetic models, reversibility often
manifests itself as a negative reaction rate in the rate law. For example
the rate law for the simple mass-action reversible reaction, A
 B is often
given by:

v D k1A � k2B

When this reaction goes in the reverse (right to left) direction, the reaction
rate, v, will be negative. This may not be apparent from the stoichiometry
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matrix, which in this case will be:

N D

�
� 1

1

�
Information on reversibility is therefore traditionally found in the rate law.
Depending on the modeling problem, reversibility can be made more ex-
plicit in the stoichiometry matrix by specifying a separate reaction path
for the reverse reaction. For example, in the previous example we might
instead represent the system by two separate rate laws:

A! B vf D k1A

B ! A vr D k2B

in which case the stoichiometry matrix now becomes:

N D

�
� 1 1

1 �1

�
Splitting a reaction into separate forward and reverse steps might not al-
ways be possible however. For example an enzyme catalyzed reversible
reaction such as A
 B cannot be represented using:

dB

dt
D vf � vr

where the forward (vf ) and reverse (vr ) rates might be represented by
irreversible Michaelis-Menten rate laws because the individual reactions
are not independent but are connected by the shared enzyme pool. In such
cases, the full enzyme mechanism in terms of elementary steps should be
used.

To illustrate that we can apply the stoichiometry matrix to other kinds of
networks, let us look at a simple signaling network and two simple gene
regulatory networks.
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2.4 Network Types

Signaling Networks

Figure 2.5 illustrates a simple protein signaling network, comprising two
double phosphorylation cycles coupled by inhibition by protein C on the
lower double cycle (D;E and F ). In this model, all species are proteins
and we assume that proteinA andD are unphosphorylated,B andE singly
phosphorylated and C and F doubly phosphorylated. C acts as a kinase
and phosphorylates D and E. The reverse reactions, v2; v4; v7 and v8 are
assumed to be catalyzed by phosphatases.

A B C

v2

v3

v4

v1

D E F

v7

v6

v8

v5

Figure 2.5 Simple Signaling Network. Protein C inhibits the activity of
reactions v5 and v6.

There is no specified stoichiometric mechanism for the inhibition on v5
and v6. Therefore the stoichiometric matrix will contain no information
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on this. The stoichiometric matrix for this system will look like:

N D

26666664

v1 v2 v3 v4 v5 v6 v7 v8

A �1 1 0 0 0 0 0 0

B 1 �1 �1 1 0 0 0 0

C 0 0 1 �1 0 0 0 0

D 0 0 0 0 �1 0 1 0

E 0 0 0 0 1 �1 �1 1

F 0 0 0 0 0 1 0 �1

37777775 (2.5)

The stoichiometric matrix can be seen to be composed of two separate
blocks corresponding to the two cycle layers. It is important to note that
whenever there are regulatory interactions in a pathway diagram, these
do not appear in the stoichiometry matrix. Instead, such information will
reside in the rate law that describes the regulation. If however the mecha-
nism for the regulation is made explicit then details of the regulation will
appear in the stoichiometry matrix. Figure 2.6 will shows a simple exam-
ple of an inhibitor I regulating a reaction, S to P . On the left is displayed
the implicit regulatory interaction. All we see is a blunt ended arrow indi-
cating inhibition. In this case, details of the regulation will be found in the
rate law governing the conversion of S to P . On the right is displayed an
explicit mechanism, a simple competitive inhibition. In this case details of
the inhibition mechanism will find its way into the stoichiometry matrix,
although from an inspection of the stoichiometry matrix it is not obvious
what kind of regulation it is.

Figure 2.7 shows a comparison of the implicit and explicit models in terms
of the stoichiometry matrix. In each case the rate laws also change. In the
implicit form, the rate law will be a Michaelis-Menten competitive inhibi-
tion model whereas in the explicit model, the rates laws (now multiplied in
number) will be simple mass-action rate laws. The choice of what to use,
an implicit or explicit model, will depend entirely on the type of question
that the model is being used to answer. There is no right or wrong way
to do this, the details of a model will depend on the type of question being
asked.
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S + E ES E + P

EI

I I

k1

k5

k2

k3

k4
S P

I

Implicit Regulatory
Interaction

Explicit Regulatory
Interaction

Figure 2.6 Example of implicit and explicit depiction of a regulatory in-
teraction. The left-hand mechanism involving inhibitor I will not appear
in the stoichiometry matrix whereas the explicit mechanism, right-hand
figure, it will.

Gene Regulatory Networks

Consider a transcription factor P1 that represses a gene with expression
rate v3 shown in Figure 2.8, left panel. In this model we have production of
P1 from reaction v1 and degradation of P1 via v2. The construction of the
stoichiometry matrix will depend on how we represent the regulated step,
v3. If regulation is implied, i.e. there is no explicit kinetic mechanism, then
the regulation will not appear in the stoichiometry matrix. For the network
on the left in Figure 2.8, the stoichiometry matrix will be given by:

N D
� v1 v2

P1 1 �1
�

(2.6)

The stoichiometry matrix has only one row indicating that there is only one
species in the model, P1 and there is no hint in the stoichiometry matrix
that there is regulation. In this model, P1 is not explicitly sequestered by
the operator site that is upstream of the gene. We make the significant
assumption that when P1 regulates, it is itself is not affected in any way.

Consider now that the interaction between P1 and v3 is made mechanis-
tically explicit. The right hand network in Figure 2.8 shows one possible
way in which to represent the interaction of the transcription factor, P1
with gene v3. In the explicit model, the transcription factor, P1 is as-
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N D

24
v1

S �1

P 1

I 0

35 N D

266664

v1 v2 v3 v4 v5

S �1 1 0 �1 1

P 0 0 1 0 0

I 0 0 0 �1 1

ES 1 �1 1 0 0

EI 0 0 0 1 �1

377775
Implicit Explicit

Figure 2.7 Stoichiometry matrices corresponding to the two models in
Figure 2.6

sumed to bind to a repressor site preventing gene expression. In the ex-

v3
v2

v3

P1

P1

Active

Inactive
v4r

v4fP1 v3

v2

Implicit Model Explicit or Mechanistic Model

v1 v1

Figure 2.8 Two simple gene regulatory networks involving gene repres-
sion. On the left side is the implicit model where P1 represses v3, on the
right side is the explicit model showing a more detailed mechanism for the
regulation.

plicit model there are two new species, designated active gene and inactive
gene. The stoichiometry matrix will therefore include two additional rows
corresponding to these two new species. The stoichiometry matrix for the
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explicit model is shown below:

N D

24
v1 v2 v4r v4f

P1 1 �1 �1 1

P1(Active) 0 0 �1 1

P1(InActive) 0 0 1 �1

35 (2.7)

In this case, P1 is actively sequestered on to the operator site and there-
fore appears in the stoichiometry matrix. Processes such as consumption,
production or sequestration by some binding mechanism will appear as
columns in the stoichiometry matrix. Regulation that is often depicted by
arrow or blunt ends are modeled in the rate law itself and therefore do not
appear in the stoichiometry matrix.

In conclusion, regulation does not appear explicitly in a stoichiometry ma-
trix unless the regulation is represented in an explicit mechanistic scheme.
The choice of implicit or explicit representations depends on the question
being asked and the availability of suitable data.

2.5 The System Equation

Equation 2.3, which describes the mass balance equation, can be reex-
pressed in terms of the stoichiometry matrix to form the system equation.

ds

dt
D Nv (2.8)

where
N is the m � n stoichiometry matrix and v is the n dimensional rate vec-
tor, whose i th component gives the rate of reaction i as a function of the
species concentrations. s is the m vector of species.

Looking again at the simple chain of reactions in Figure 2.3, the system
equation can be written down as:

ds

dt
D Nv D

266664
�1 0 0 0

1 �1 0 0

0 1 �1 0

0 0 1 �1

0 0 0 1

377775
2664
v1
v2
v3
v4

3775 (2.9)
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If the stoichiometry matrix is multiplied into the rate vector, the mass-
balance equations show earlier (2.4) are recovered. To illustrate that the
system equation might look like for a simple system, consider the model
in Jarnac format:

p = defn cell

A -> B; k1*A - k2*B;

B -> C; k3*B - k4*C;

end;

p.k1 = 0.1; p.k2 = 0.02;

p.k3 = 0.3; p.k4 = 0.04;

p.A = 10; p.B = 0; p.C = 0;

The system equation for this model will be given by:

ds

dt
D Nv D

24 �1 0

1 �1

0 1

35 �
k1A � k2B

k3B � k4C

�
(2.10)

All stoichiometric interactions are placed in the stoichiometry matrix.

The example shown in Figure 2.5 and Figure 2.8 illustrated non-stoichiometric
interactions, namely two inhibition interactions from C to reactions v5 and
v6 and repression on v3 by P1. As was noted, these interactions do no oc-
cur in the stoichiometry matrix. Instead they will be found in the rate
vector, v in the form of a particular rate law.

The stoichiometry matrix represents the mass transfer connectivity of the
network and contains information on the network’s structural mass-transfer
characteristics. These characteristics fall into two groups, relationships
among the species and relationships among the reaction rates. These rela-
tionships will be considered in detail in a later chapter (Chapter ?? and ??).
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2.6 Jarnac

The modeling platform Jarnac provides facilities to extract the stoichiom-
etry matrix from a model. The command for generating the stoichiometry
matrix is p.sm assuming the model is stored in the variable p. The script
and results of a run are given below:

p = defn cell

J1: A -> B; k1*A - k2*B;

J2: B -> C; k3*B - k4*C;

end;

p.k1 = 0.1; p.k2 = 0.02;

p.k3 = 0.3; p.k4 = 0.04;

p.A = 10; p.B = 0; p.C = 0;

// Print out the stoichiometry matrix

println p.sm;

If this script is run, the output is as shown below:

J1 J2

A{{ -1 0 }

B { 1 -1 }

C { 0 1 }}

Note that in Jarnac, matrices are labeled, this is useful for identifying the
corresponding species and reactions in the stoichiometry matrix.

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edi-
tion, Ambrosius Publishing ISBN: 978-0982477335
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2. Stephanopoulos G, Aristidou A, and Nielsen J (1998) Metabolic en-
gineering: principles and methodologies. Academic Press, ISBN:
978-0126662603

3. Palsson BO (2006) Systems Biology Systems Biology: Properties of
Reconstructed Networks. Cambridge University Press, ISBN: 978-
0521859035

Exercises

1. Explain the difference between the terms: Stoichiometric amount,
Stoichiometric coefficient, rate of change (dX=dt) and reaction rate
(vi ). Refer to Appendix A to answer this question.

2. Determine the stoichiometric amount and stoichiometric coefficient
for each species in the following reactions:

A �! B

AC B �! C

A �! B C C

2A �! B

3AC 4B �! 2C CD

AC B �! AC C

AC 2B �! 3B C C

3. Derive the set of differential equations for the following model in
terms of the rate of reaction, v1, v2 and v3:

A
v1
! 2B

B
v2
! 2C

C
v3
!
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4. Derive the set of differential equations for the following model in
terms of the rate of reaction, v1, v2 and v3:

A
v1
! B

2B C C
v2
! B CD

D
v3
! C C A

5. Write out the stoichiometry matrix for the networks in question 3
and 4

6. Enter the previous models, 3 and 4, into Jarnac and confirm that the
Jarnac stoichiometry matrices are the same as those derived manu-
ally in the exercises.

7. Derive the stoichiometry matrix for each of the following networks.
In addition write out the mass-balance equations in each case.

(a)

A

v1 B

C

D
v2

v3

v4

A B C

v2

v3

v4

v1

(b)

S2S1
v1

v2

v3

v4

(c)
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A

v1 B

C

D
v2

v3

v4

A B C

v2

v3

v4

v1

(d)

ACX
v1
�! B C Y B CX

v2
�! Y

B
v3
�! C C CX

v4
�! D C Y

D C Y
v5
�! X X

v6
�! Y

X CW
v7
�! 2Y 2Y

v8
�! X CW

8. For the irreversible enzyme catalyzed reaction, A! B:

(a) Write out the stoichiometry matrix.

(b) Write out the stoichiometry matrix in terms of the elementary
reactions that make up the enzyme mechanism.

9. A gene G1 expresses a protein p1 at a rate v1. p1 forms a tetramer
(4 subunits), called p41 at a rate v2. The tetramer negatively regulates
a gene G2. p1 degrades at a rate v3. G2 expresses a protein, p2 at a
rate v9. p2 is cleaved by an enzyme at a rate v4 to form two protein
domains, p12 and p22 . p12 degrades at a rate v5. Gene G3 expresses a
protein, p3 at a rate v6. p3 binds to p22 forming an active complex,
p4 at a rate v10, which can bind to gene G1 and activate G1. p4
degrades at a rate v7. Finally, p12 can form a dead-end complex, p5,
with p4 at a rate v8.

10. (a) Draw the network represented in the description given above.

(b) Write out the differential equation for each protein species in
the network in terms of v1; v2; : : :.
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(c) Write out the stoichiometric matrix for the network.

11. Write out the differential equations for the system depicted in equa-
tion 2.9.

12. Given the following stoichiometry matrix, write out the correspond-
ing network diagram. Why might this process not fully recover the
original network from which the stoichiometry matrix was derived?

2666666664

v1 v2 v3 v4 v5

A �1 0 �1 0 0

B 1 �1 0 0 3

C 0 2 �1 0 0

D 0 0 1 �1 0

E 0 0 0 1 �1

F 0 0 0 0 1

G 0 0 0 �1 0

3777777775
(2.11)

13. Why is it better to store a model as a list of reactions rather than a
set of differential equations?
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3
How Systems Behave

3.1 System Behavior

Ultimately we are interested in what kinds of behavior systems can dis-
play, how that behavior is generated and with that understanding how
systems can be manipulated and controlled. As we proceed through the
book we will encounter many different kinds of behavior. At this stage
however it is worth describing the states that are fundamental to all sys-
tems. These states fall into three groups: (Thermodynamic) equilibrium,
steady state, and transients. In the literature the terms equilibrium and
steady state are often used to mean the same thing but here they will be
used to describe two very different states.

The simplest and arguably the least interesting is equilibrium, or more
precisely thermodynamic equilibrium.

3.2 Equilibrium

Thermodynamic equilibrium, or simply equilibrium, refers to the state of
a system when all forces are balanced. In chemistry, thermodynamic equi-

57
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librium is when all forward and reverse rates are equal. This also means
that the concentration of chemical species are also unchanging and all net
flows are zero. Equilibrium is easily achieved in a closed system. For
example, consider the simple chemical isomerization:

A
k1



k2

B (3.1)

Let the net forward rate of the reaction, v, be equal to v D k1A � k2B .
The rates of change of A and B are given by:

dA

dt
D �v

dB

dt
D v

At equilibrium dA=dt and dB=dt equal zero, that isAk1 D Bk2, or v D 0.
The analytical solution to the chemical isomerization can be derived as
follows. Given that the system is closed we know that the total mass in the
system, AC B is constant. This constant is given by the sum of the initial
concentrations of A and B which we will define as Ao C Bo. Note that
Ao C Bo D A.t/ C B.t/ is always true. We assume that the volume is
constant and set to unit volume, this allows us to state that the sum of the
concentrations is conserved. The differential equation for A is given by:

dA

dt
D k2B � k1A

Before solving this equation, let us replace B by the term Ao C Bo � A.
This yields:

dA

dt
D k2Ao C k2Bo � k2A � k1A D k2.Ao C Bo/ � A.k1 C k2/

The easiest way to solve this equation is to use Mathematica or Max-
ima. The Mathematica command is DSolve[A'[t] == k2 (Ao + Bo)

- A[t] (k1 + k2), A[0] == Ao, A[t], t], where A[0] == Ao sets
the initial condition for the concentration of A to be Ao. By implication,
the initial condition forBo is .AoCBo/�Ao D Bo. The result of applying
the Mathematica command yields the following solution:

A.t/ D
.Ao C Bo/k2

k1 C k2
C
e�.k1Ck2/tvinitial

k1 C k2
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Figure 3.1 Time course for equilibration of the reversible reaction in
model 3.1 where k1 D 1; k2 D 0:5; Ao D 10; Bo D 0. The ratio of
the equilibrium concentration is given by k1=k2. Jarnac model: 3.1

The first term in the equation is a constant and equals the equilibrium con-
centration of A. The first term is however a function of the total mass in
the system (Ao C Bo) which means that the equilibrium solution is in-
dependent of the starting concentrations so long as the total remains the
same. The second term is time dependent and describes the evolution of
the system when the initial concentrations of A and B are not set to the
equilibrium concentrations. The initial concentrations are set in the term
vinitial which is the reaction rate, v, at t D 0. The second term also has
an exponential component which approaches zero as time goes to infin-
ity so that at infinite time we are left with the first term which equals the
concentration of A when dA=dt D dB=dt D 0.

At equilibrium the reaction rate can be computed by substituting the equi-
librium concentration of A and B into the reaction rate, v D k2B � k1A.
We note that the equilibrium concentration of A is given by:

Aeq D
.Ao C Bo/k2

k1 C k2
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and for B by subtracting Aeq from Ao C Bo. When the Aeq and Beq
relations are substituted into v, the result is:

v D 0

From this somewhat long winded analysis, it has been determined for the
closed reversible system, at infinite time, the concentrations of A and B
reach some constant values and that the net rate, v is zero. The system is
therefore at thermodynamic equilibrium.

In biochemical models it is often assumed that when the forward and re-
verse rates for a particular reaction are very fast compared to the surround-
ing reactions that the reaction is said to be in quasi-equilibrium. That is,
although the entire system may be out of equilibrium there may be parts of
the system that can be approximated as though they were in equilibrium.
This is often done to simplify the modeling process. Living organisms
are not themselves at thermodynamic equilibrium, if they were then they
would technically be dead. Living systems are open so that there is a con-
tinual flow of mass and energy across the system’s boundaries.

3.3 Steady State

The steady state, also called the stationary state, is where the rates of
change of all species, dS=dt are zero but at the same time the net rates
are non-zero, that is vi ¤ 0. This situation can only occur in an open
system, that is a system that can exchange matter with the surroundings.
To convert the simple reversible model described in the last section into
an open system we need only add a source reaction and a sink reaction as
shown in the following scheme:

Xo
vo
! A

k1



k2

B
k3
! (3.2)

In this case simple mass-action kinetics is assumed for all reactions. It
is also assumed that the source reaction, with rate vo, is irreversible and
originates from a boundary species, Xo, that is Xo is fixed. In addition
it is assumed that sink reaction, with rate constant, k3 is also irreversible.
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For the purpose of making it easier to derive the time course solution, the
reverse rate constant, k2 will be assumed to equal zero and we will set
the initial conditions for A and B to both equal zero. The mathematical
solution for the system can again be obtained using Mathematica:

A.t/ D vo
1 � e�k1t

k1

B.t/ D vo

k1

�
1 � e�k3t

�
C k3

�
e�k1t � 1

�
k3 .k1 � k3/

(3.3)

As t tends to infinity A.t/ tends to vo=k1 and B.t/ tends to vo=k3. In
addition, the reaction rate through each of the three reaction steps is vo.
This can be confirmed by substituting the solutions for A and B into the
reaction rate laws. Given that vo is greater than zero and that A and B
reach constant values given sufficient time, we conclude that this system
eventually settles to a steady state rather than thermodynamic equilibrium.
The system displays a continuous flow of mass from the sink to the source.
This can only continue undisturbed so long as the source material, Xo
never runs out and that the sink is continuously emptied. Figure 3.2 shows
a simulation of this system.

At steady state, the rate of mass transfer across a reaction is often called
the flux, or J .

At steady state the net reaction rate is also called the pathway flux, often
symbolized with the latter J .
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Thermodynamic Equilibrium and Steady State

Thermodynamic equilibrium (or equilibrium for short) and the steady
state are distinct states of a chemical system. If we consider a system
where every part is in equilibrium then we can be sure of two things.
That the species concentrations are unchanging and most importantly
there are no net flows of mass or energy within the system or between
the system and the environment. A system that is in equilibrium must
have the following properties:

ds

dt
D 0

for all i : vi D 0

where vi is the net reaction rate for the i th reaction step. When a bio-
logical system is at equilibrium, we say it is dead. Thermodynamically
we can also say that entropy production is at zero and has reached its
maximum value.

The steady state has some similarities with the equilibrium state, species
concentrations are still unchanging, however there are net flows of en-
ergy and mass within the system and with the environment. Systems at
steady state must therefore be open and will necessarily continuously
dissipate any gradients between the system and the external environ-
ment. This means that one or more vi s must be non-zero

The steady state is defined when all dSi=dt are equal to zero while one
or more reaction rates are non-zero:

ds

dt
D 0

vi ¤ 0

Thermodynamically, we can also say that the entropy production of the
system at steady state is lower than the entropy production in the envi-
ronment. In some of the literature the terms equilibrium and steady state
are used interchangeably resulting in possible confusion. In this book,
the word equilibrium will be used to refer to a system at thermodynamic
equilibrium not at steady state.
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Figure 3.2 Time course for an open system reaching steady state in
model 3.4 where vo D 1; k1 D 2; k2 D 0; k3 D 3; Ao D 0; Bo D 0.
Xo is assumed to be fixed. The Jarnac model: 3.2

We can sometimes also calculate the steady state mathematically. In the
last example we used the simplified model:

Xo
vo
! A

k1
! B

k3
! (3.4)

The differential equations for this system are:

dA

dt
D vo � k1A

dB

dt
D k1A � k3B

If we set the rates of change to zero:

0 D vo � k1A

0 D k1A � k3B

We have equations in two unknown, A and B . We can solve for A and B
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to obtain:

A D vo=k1

B D vo=k3

Usually however we cannot solve the equations and so must revert to com-
puter simulation or useing specialist software (such as Jarnac) to compute
the steady state. The script below show a Jarnac model where we ask Jar-
nac to solve for the steady state using the command p.ss.eval.

p = defn model

     $Xo -> A;  vo;

      A -> B;   k1*A;

      B -> $X1; k3*B;

end;

// Set up the model initial conditions

p.Xo = 1;   p.X1 = 0;

p.k1 = 0.2; p.k3 = 0.3;

p.vo = 0.5;

// Evaluation the steady state

p.ss.eval;

println "Steady State values:", p.A, p.B;

// Output follows:

Steady State values:  2.5  1.66667

3.4 Transients

The final simple behavior that a system can show is a transient. A tran-
sient is usually the change that occurs in the species concentrations as the
system moves from one state, often a steady state, to another. Equation 3.3
shows the solution to a simple system that describes the transient behavior
of species A and B . Figure 3.2 illustrates the transient from an initial con-
dition, in this case from a non-steady state condition to a steady state. A
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periodic (such as an oscillation) or a chaotic system may be considered a
transient, one that is unable to settle to a fixed steady state. In the case of a
system showing periodic behavior, the transient repeats itself indefinitely
at regular intervals called the period. In a chaotic system, the transient
never repeats the exact same trajectory but will continue indefinitely.

3.5 Setting up a Model in Software

There are many software tools both commercial and free (including open
source) that one can use to build models of cellular networks. In this
book we will use Jarnac, a software tool written by the author. Jarnac
is a script based tool where one enters a model as a text file, the model
is then compiled, run and the results displayed. Jarnac is currently a win-
dows based application. It is quite easy to set up models using Jarnac but
it also has a fairly complete programming language built-in that allows
advanced users to do some sophisticated analysis. A brief introduction on
how to use Jarnac is given in Appendix ??. For those who wish to use other
tools, such as COPASI (http://www.copasi.org), CellDesigner (http:
//celldesigner.org/ or even Matlab (http://www.mathworks.com,
it is easy to convert Jarnac files into standard Systems Biology Markup
Language (SBML) or Matlab scripts and then load the models into the
simulation tool of choice.

3.6 Effect of Different Kinds of Perturbations

When we talk about model dynamics we mean how species levels and
reaction rates change in time as the model evolves. There are a number
of ways to elicit a dynamic response in a model, the two we will consider
here are perturbations to species and perturbations to model parameters.

Effect of Perturbing Floating Species

Let us consider a two step pathway of the following form:

http://www.copasi.org
http://celldesigner.org/
http://celldesigner.org/
http://www.mathworks.com
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Xo

v1 D k1Xo

S1

v2 D k2S1

X1

We assume that Xo and X1 are fixed. If the initial concentration of S1 is
zero then we can run a simulation and allow the system to come to steady
state. This is illustrated in Figure 3.3
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Figure 3.3 S1 approaching steady state. Jarnac model: 3.3

Once at steady state we can consider applying perturbations to see what
happens. For example, Figure 3.4 illustrates the effect of injecting 0.35
units of S1 at t D 20 and watching the system evolve. The Jarnac script
used to generate this graph is shown in the chapter Appendix. In prac-
tice this could be accomplished this by injecting 0.35 units of S1 into the
volume where the pathway operates. What we observe is that the concen-
tration of S1 initially jumps by the amount 0.35, then relaxes back to its
steady state concentration before the perturbation was made (Figure 3.4).
When we apply perturbations to species concentrations and the change re-
laxes back to the original state, we call the system stable. We will return
to the topic of stability in the next section.

Figure 3.4 illustrates perturbing one of the floating molecular species by
physically adding a specific amount of the substance to the pathway. In
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many cases we will find that the system will recover from such perturba-
tions as we see in Figure 3.4. We are not limited to single perturbations,
Figure 3.5 shows multiple perturbations, both positive and negative. Not
all systems show recovery like this but those that do not are called un-
stable. That is when we perturb a species concentration, instead of the
perturbation relaxing back, it begins to diverge.

0 10 20 30 40 50
0

0:2

0:4

0:6

0:8

1

S1 Decays Back

Perturbation in S1

Time

C
on

ce
nt

ra
tio

n
of
S
1

Figure 3.4 Stability of a simple biochemical pathway at steady state. The
steady state concentration of the species S1 is 0.5. A perturbation is made
to S1 by adding an additional 0.35 units of S1 at time D 20. The system
is considered stable because the perturbation relaxes back to the original
steady state. Jarnac model: 3.4
.

Effect of Perturbing Model Parameters

In addition to perturbing floating species we can also perturb the model pa-
rameters. Such parameters include kinetic constants and boundary species.
When changing a parameter we can do it in two ways, we can make a per-
manent change or we can make a change and at some time later return the
parameter to its original value. Assuming that the steady state is stable,
a temporary change will result in the steady state changing then recover-
ing to the original state when the parameter is changed back. Figure 3.6
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Figure 3.5 Multiple Perturbations. The steady state concentration of the
species S1 is 0.5 and a perturbation is made to S1 by adding an additional
0.35 units of S1 at time D 20 and removing 0.35 units at time D 40. In
both cases the system relaxes back. Jarnac script: 3.5

shows the effect of perturbing the rate constant, k1 and then restoring the
parameter to its original value at some time later.

In some applications other types of perturbations are made. For example
in studying the infusion of a drug where the concentration of the drug is a
model parameter, one might use a slow linear increase in the drug concen-
tration. Such a perturbation is called ramp. More sophisticated analyzes
might require a sinusoidal change in a parameter, an impulse, a pulse or an
exponential change. The main point to remember is that parameter changes
will usually result in changes to the steady state concentrations and fluxes.

For completeness, Figure 3.7 shows what happens when we perturb both
a parameter and a species concentration. As expected the species concen-
tration does not recover to the original steady state.
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Figure 3.6 Effect of Perturbing Model Parameters. Jarnac script: 3.6
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Figure 3.7 Effect of Perturbing Model Parameters and Species Concen-
tration.
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3.7 Sensitivity Analysis

Sensitivity analysis at steady state looks at how particular model variables
are influenced by model parameters. There are at least two main rea-
sons why it is interesting to examine sensitivities. The first is a practical
one. Many kinetic parameters we use in building biochemical models can
have a significant degree of uncertainty about them. By determining how
much each parameter has an influence on the model’s state we can decide
whether we should improve our confidence in the particular parameter. A
parameter that has considerable influence but at the same time has signif-
icant uncertainty is a parameter that should be determined more carefully
by additional experimentation. On the other hand a parameter that has lit-
tle influence but has significant uncertainly associated with it, is relatively
unimportant. A sensitivity analysis can therefore be used to highlight pa-
rameters that need better precision.

The second reason for measuring sensitivities is to provide insight. The
degree to which a parameter can influence a variable tells us something
about how the network is responding to perturbations. Such a study can be
used to answer questions about robustness and adaptation. We will delay
further discussion of this important topic to the second half of the book
where we will describe it much more detail.

How are sensitivities represented? Traditionally there are two way, one
based on absolute sensitivities and the second based on relative sensitiv-
ities. Absolute sensitivities are simply given by the ratio of the absolute
change in the variable to the absolute change in the parameter. That is:

S D
�V

�p

where V is the variable and p the parameter. This equation shows fi-
nite changes to the parameter and variable. Unfortunately because most
systems are nonlinear and therefore the value for the sensitivity will be a
function of the size of the finite change. To make the sensitivity indepen-
dent of the size of the change, the sensitivity is usually defined in terms of
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infinitesimal changes:

S D
dV

dp

Although absolute sensitivities are simple they have one drawback, the
value can be influenced by the units used to measure the variable and pa-
rameter. Often in making experimental measurements we won’t be able
to measure the quantity using the most natural units, instead we may have
measurements in terms of fluorescence, colony counts, staining on a gel
and so on. Is is most likely that the variable and parameter units will be
quite different and each laboratory may have its own way particular units
is uses. Absolute sensitivities are therefore quite difficult to compare.

To get round the problem of units, many people will use relative sensitivi-
ties, These are simple scaled absolute sensitivities:

S D
dV

dp

p

V

The sensitivity is defined in terms of infinitesimal changes for the same rea-
son cited before. The reader may also recall that elasticities are measured
in this way. Relative sensitivities are immune from the units we use to
measure quantities but also relative sensitivities correspond more closely
to how many measurements are made, often in terms of relative or fold
changes. In practice steady state relative sensitivities should be measured
by taking a measurement at the operating steady state, making a perturba-
tion (preferable a small one), waiting for the system to reach a new steady
state then measuring the system again. It is important to be aware that the
steady state sensitivities measure how a perturbation in a parameter moves
the system from one steady state to another.

3.8 Robustness and Homeostasis

Biological organisms are continually subjected to perturbations. These
perturbations can originate from external influences such as changes in
temperature, light or the availability of nutrients. Perturbations can also
arise internally due to the stochastic nature of molecular events or by
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natural genetic variation. One of the most remarkable and characteristic
properties of living systems is their ability to resist such perturbations and
maintain very steady internal conditions. For example the human body
can maintain a constant core temperature of 36.8ıC˙0:7 even though ex-
ternal temperatures may vary widely. The ability of a biological system
to maintain a steady internal environment is called homeostasis, a phrase
introduced by Claude Bernard almost 150 years ago. Modern authors may
also refer to this behavior as robustness, although this word is used in
many other contexts.

There are a number of mechanisms that are used in biology to maintain
homeostasis. Perhaps the most common is negative feedback. This is
where the difference between the desired output and the actual output is
used to modulate the process that determines the output. For example, if
the output is lower than the desired output then the process will increase
the output. Such systems are found at multiple levels in a living organism,
including subcellular processes such as metabolism and multicellular pro-
cesses that control for example the level of glucose in the blood stream.
One way to measure the degree of robustness or homoeostasis in a system
is to use sensitivity analysis. We investigate the use of negative feedback
to maintain concentrations within a narrow range in a later chapter.

3.9 Stability

Figure 3.4 shows a simulation where a species concentration is disturbed
and over time relaxes back to the original steady state. This is an example
of a stable steady state.

The differential equation for the single floating species, S1, is given by

dS1

dt
D k1Xo � k2S1 (3.5)

and as we saw before, with a steady state solution

S1 D k1Xo=k2 (3.6)

The question we wish to ask here is whether the steady state is stable or not,
that is whether perturbation to species recover or not? We can show that
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the two step model is stable by using the following mathematical argument.
The differential equation describing the two step model is given by,

dS1

dt
D k1Xo � k2S1

If the system is at steady state, let us make a small perturbation to the
steady state concentration of S1, ıS1 and ask how ıS1 changes as a result
of this perturbation, that is what is d.ıS1/=dt? The new rate of change
equation is rewritten as follows:

d.S1 C ıS1/

dt
D k1Xo � k2.S1 C ıS1/

If we insert the steady state solution for S1 (equation 3.6) into the above
equation we are left with:

dıS1

dt
D �k2ıS1 (3.7)

In other words the rate of change of the disturbance itself, ıS1 is negative,
that is, the system attempts to reduce the disturbance so that the system
returns back to the original steady state. Systems with this kind of behavior
are called stable. If the rate of change in S1 had been positive instead of
negative however, the perturbation would have continued to diverge away
from the original steady state and the system would them be considered
unstable.

A biochemical pathway is dynamically stable at steady state if small
perturbations in the floating species concentrations relax back to the
original state.

To continue, let us divide both sides of equation 3.7 by ıS1 and taking
the limit, we find that @.dS1=dt/=@S1 is equal to �k2. The stability of
this simple system can therefore be determined by inspecting the sign of
@.dS1=dt/=@S1 which can be easily determined by taking the derivatives
of the differential equations with respect to the species concentrations.
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For larger systems the stability of a system can be determined by looking
at all the terms @.dSi=dt/=@Si which are given collectively by the expres-
sion:

d.ds=dt/

ds
D J (3.8)

where J is called the Jacobian matrix containing elements of the form
@.dSi=dt/=@Si . Equation 3.7 can be generalized to:

d.ıs/

dt
D J ıs (3.9)

where J is given by 26666664
@S1=dt
@S1

� � �
@S1=dt
@Sm

:::
: : :

:::

@Sm=dt
@S1

� � �
@Sm=dt
@Sm

37777775
Equation 3.9 is an example of an unforced linear differential equation and
has the general form:

dx

dt
D Ax

Solutions to such equations are well known and take the form:

xj .t/ D c1K1e
�1t C c2K2e

�2t C � � � cnKne
�nt

That is the solution to an unforced linear differential equations involves a
sum of exponentials, e�i t , constants ci and vectors, K i . The exponents
of the exponentials are given by the eigenvalues (See Appendix C) of the
matrix,A andK i the corresponding eigenvectors. The ci terms are related
to the initial conditions assigned to the problem. It is possible for the
eigenvalues to be complex but in general if the real parts of the eigenvalues
are negative then the exponents decay (stable) whereas if they are positive
the exponents grow (unstable). We can therefore determine the stability
properties of a given model by computing the eigenvalues of the Jacobian
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matrix and looking for any positive eigenvalues. Note that the elements
of the Jacobian matrix will often be a function of the species levels, it is
therefore important that the Jacobian be evaluated at the steady state of
interest.

Example 3.1

The following system:
S1 ! S2 !

if governed by the following set of differential equations:

dS1

dt
D �2S1

dS2

dt
D 2S1 � 4S2

The solution to this system can be derived using Mathematica or by using standard
algebraic method for solving linear homogeneous systems. The solution can be
found to be: �

S1
S2

�
D c1

�
1

1

�
e�2t C c2

�
0

1

�
e�4t

S1 D c1e
�2t

S2 D c1e
�2t
C c2e

�4t

Since the exponents are all negative (-2, -2 and -4), the system is stable to pertur-
bations in S1 and S2.

There are many software packages that will compute the eigenvalues of a
matrix and there are a small number packages that can compute the Jaco-
bian directly from the biochemical model. For example, the script below
is taken from Jarnac, it defines the simple model, initializes the model val-
ues, computes the steady state and then prints out the eigenvalues of the
Jacobian matrix. For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The
output from running the script is given below showing that the eigenvalue
is �0:3. Since we have a negative eigenvalue, the pathway must be stable
to perturbations in S1.
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p = defn model

$Xo -> S1; k1*Xo;

S1 -> $X1; k2*S1;

end;

// Set up the model initial conditions

p.Xo = 1; p.X1 = 0;

p.k1 = 0.2; p.k2 = 0.3;

// Evaluation the steady state

p.ss.eval;

// print the eigenvalues of the Jacobian matrix

println eigenvalues (p.Jac);

// Output follows:

{ -0.3}

Example 3.2

The following system:
! S1 ! S2 !

if governed by the following set of differential equations:

dS1

dt
D 3 � 2S1

dS2

dt
D 2S1 � 4S2

The Jacobian matrix is computed by differentiating the equations with respect to
the steady state values of S1 and S2:

J D

�
�2 0

2 �4

�
The eigenvalues for this matrix are: �2 and �4 respectively. Since both eigenval-
ues are negative the system is stable to small perturbations in S1 and S2.
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The pattern of eigenvalues can tell us a lot about stability but also about
the form of the transients that will occur when we perturb the state of the
system. In the next section we will investigate this aspect.

Further Reading

1. Kipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005)
Systems Biology in Practice, Wiley-VCH Verlag

2. Steuer R, Junker BH (2008) Computational Models of Metabolism:
Stability and Regulation in Metabolic Networks, Advances in Chem-
ical Physics, Volume 142, (ed S. A. Rice), John Wiley & Sons, Inc.

3. Stucki JW (1978) Stability analysis of biochemical systems–a prac-
tical guide. Prog Biophys Mol Biol. 33(2):99-187.

Exercises

1. Describe the difference between thermodynamic equilibrium and a
steady state.

2. Write out the differential equations for the system A  B  C

where the reactions rates are given by:

v1 D k1A � k2B

v2 D k3B � k4C

Find the concentrations of A, B and C when the rates of change are
zero dA=dt D 0; dB=dt D 0; dC=dt D 0. Show that this system
is at thermodynamic equilibrium when the rates of change are zero.

3. What do we mean by the phrase quasi-equilibrium?



78 CHAPTER 3. HOW SYSTEMS BEHAVE

4. Find the mathematical expression for speciesA and B that describes
the steady state for the network:

Xo
k1



k2

A
k3
! B

k4
! (3.10)

Assume thatXo is fixed and that all reactions are governed by simple
mass-action kinetics.

5. Explain what is meant by a stable and unstable steady state.

6. The steady state of a given pathway is stable. Explain the effect in
general terms on the steady state if:

a) A bolus of floating species is injected into the pathway

b) A permanent change to a kinetic constant.

7. Determine whether the steady state for the system 3.10 is stable or
not.

8. Why are scaled sensitivity sometime of more advantage that un-
scaled sensitivities?

9. Use a software tool of your choice to visualize the phase plot for the
following system:

dx

dt
D 2:55x � 4:4y

dy

dt
D 5x C 2:15y

Appendix

See Appendix ?? for more details of Jarnac.

p = defn cell

      A -> B;  k1*A;

      B -> A;  k2*B;
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end;

p.A = 10; p.k1 = 1;

p.B = 0;  p.k2 = 0.5;

m = p.sim.eval (0, 6, 100);

graph (m);

Listing 3.1 Script for Figure 3.1

p = defn cell

     $Xo -> S1;  vo;

      S1 -> S2;  k1*S1 - k2*S2;

      S2 -> $X1; k3*S2;

end;

p.vo = 1;

p.k1 = 2; p. k2 = 0;

p.k3 = 3;

m = p.sim.eval (0, 6, 100);

graph (m);

Listing 3.2 Script for Figure 3.2

p = defn newModel

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.0;

m = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

graph (m);

Listing 3.3 Script for Figure 3.3
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p = defn newModel

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.5;

// Simulate the first part up to 20 time units

m1 = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units

p.S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 50, 100, [<p.time>, <p.S1>]);

// Merge and plot the two halves of the simulation

graph (augr(m1, m2));

Listing 3.4 Script for Figure 3.4

p = defn newModel

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.0;

// Simulate the first part up to 20 time units

m1 = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units

p.S1 = p.S1 + 0.35;
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// Continue simulating from last end point

m2 = p.sim.eval (20, 40, 50, [<p.time>, <p.S1>]);

// Merge the data sets

m3 = augr(m1, m2);

// Do a negative perturbation in S1

p.S1 = p.S1 - 0.35;

// Continue simulating from last end point

m4 = p.sim.eval (40, 60, 50, [<p.time>, <p.S1>]);

// Merge and plot the final two halves of the simulation

graph (augr(m3, m4));

Listing 3.5 Script for Figure 3.5

p = defn newModel

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.5;

// Simulate the first part up to 20 time units

m1 = p.sim.eval (0, 20, 5, [<p.time>, <p.S1>]);

// Perturb the parameter k1

p.k1 = p.k1*1.7;

// Simulate from the last point

m2 = p.sim.eval (20, 50, 40, [<p.time>, <p.S1>]);

// Restore the parameter back to ordinal value

p.k1 = 0.2;

// Carry out final run of the simulation
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m3 = p.sim.eval (50, 80, 40, [<p.time>, <p.S1>]);

// Merge all data sets and plot

m4 = augr(augr(m1, m2), m3);

graph (m4);

Listing 3.6 Script for Figure 3.6



4
Flux Constraints

4.1 Flux Constraints

The study of metabolism, that is the chemical reactions that are involved
in breaking down nutrients and building up more complex molecules, was
one of the earliest topics of study in biochemistry. Glycolysis, which
concerns the breakdown of glucose in to pyruvate, was one of the first
metabolic pathways to be investigated during the early part of the 20th cen-
tury. In the period since, numerous other pathways have been uncovered.
One of the most widely studied organisms, E. coli, has been shown at last
count to have at least 918 enzymes catalyzing a wide range of metabolic
functions [47]. In any particular pathway, enzymes catalyze the conver-
sion of substances from one form to another. The rate of conversion is
often called the flux which is simply another word for a reaction rate but
refers specifically to the reaction rate when the enzyme is embedded in a
pathway. Figure 4.1 shows a simplified metabolic map from Corynebac-
terium glutamicum [?]. The numbers next to the reaction steps indicate
the flux through each step and shows how the flow of mass through the
different metabolic pathway are distributed.

Stoichiometry has a significant effect on the possible space of flux distri-
butions and in chapter the focus will be stoichiometry and flux balance.

83
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Figure 4.1 Metabolic Map of Corynebacterium glutamicum central
metabolism adapted from [?].

4.2 Flux Balance Laws

While the rows of the stoichiometry matrix, N, indicate possible conser-
vation relationships among the molecular species, the columns provide in-
formation on the constraints among the reaction rates at steady state. The
steady state of a system is defined when the rates of change are zero, that
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is when:
Nv D 0

Note that although the rates of change may be zero at steady state, the net
flows (or fluxes) through individual reactions will not be zero. By illustra-
tion, let us look at the very simple branched pathway shown in Figure 4.2.
The stoichiometry matrix for this pathway is: N D Œ1 � 1 � 1� and the
balance equation at steady state is given by:

�
1 �1 �1

�24 v1
v2
v3

35 D 0
Or, more simply, v1 � v2 � v3 D 0.

S
v1

v2

v3

Figure 4.2 Simple branched pathway.

A common need by metabolic engineers is to know the flux distribution
throughout a reaction network. One approach to obtain this information
is to measure every individual flux in the network. This can be done, at
least in principle, by measuring the consumption or turnover rates of all
the metabolites in the network. The easiest rates to measure are on the
reaction steps that connect directly to the external environment, such steps
might be involved in nutrient and oxygen consumption, carbon dioxide,
ethanol or biomass production, quantities that can be measured experi-
mentally. However, the internal fluxes that are deep inside the metabolic
networks are much more difficult to measure, although the use of 13C -
labeled substrates has made such measurements more accessible.

In practice it is extremely difficult to measure every reaction rate directly,
instead the balance equations can be exploited to reduce the number of
necessary flux measurements. To illustrate, the balance equation for the
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simple branched pathway shows us that only two rates actually need be
measured because the third can be computed. For example, if v2 and v1
were measured, the third rate, v3, could be calculated from the balance
equation v3 D v2 � v1, taking note that the pathway must be in steady
state. For an experimentalist this is a great benefit because it reduces the
number of measurements that need to be made.

One of the practical aims of flux balance analysis is to devise methods that
allow all the fluxes in a pathway to be determined with the minimum effort.
To devise such methods however, a number of questions need to be an-
swered. For example, what are the minimum number of fluxes that should
to be measured experimentally to fully determine all fluxes in a pathway?
In the simple branch pathway (Figure 4.2) a minimum of two fluxes were
required. Alternatively it may not be possible to measure even the mini-
mum number, in such cases can a best estimate for the flux distribution in
a pathway be computed? The following sections will consider approaches
to answering all these questions, particularly for arbitrary networks where
systematic approaches are required.

Box 5.1 The Null Space

Given a matrix equation of the form Ax D 0 where A is an m � n
matrix and x is a column vector of n elements, the solution, that is all
the vectors x that satisfy this equation, is called the null space of A.

The minimum number of vectors required to fully describe the null
space is called the dimension and is equal to the rank of the matrix
rank.A/ minus the number of columns, n. These vectors form what is
called a basis for the space and linear combinations of these vectors can
generate any other vector in the null space. In order to form a basis, the
vectors must also be linearly independent.

Many tools can compute the basis for the null space, for example null
(A, 'r') will compute the basis in Matlab, while NullSpace[A] can
be used to compute the basis in Mathematica.
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Box 5.2 Linear Dependence and Independence

One of the most important ideas in linear algebra is the concept of lin-
ear dependence and independence. Take three vectors, say Œ1;�1; 2�,
Œ3; 0;�1� and Œ9;�3; 4�. If we look at these vectors carefully it should
be apparent that the third vector can be generated from a combination
of the first two, that is Œ9;�3; 4� D 3Œ1;�1; 2�C2Œ3; 0;�1�. Mathemat-
ically we say that these vectors are linearly dependent.

In contrast, the following vectors, Œ1;�1; 0�; Œ0; 1;�1� and Œ0; 0; 1�, are
independent because there is no combination of these vectors that can
generate even one of them. Mathematically we say that these vectors
are linearly independent.

4.3 Determined Systems

Consider the more complicated pathway shown in Figure 4.3.

v1
S1

v2
S2

v3

S3

v6

v4 v5

Figure 4.3 Complex branched pathway.

The stoichiometry matrix for this pathway is:
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N D

24
v1 v2 v3 v4 v5 v6

S1 1 �1 0 1 0 0

S2 0 1 �1 0 1 0

S3 0 0 0 �1 �1 1

35 (4.1)

which corresponds to the following three balance equations:

v1 � v2 C v4 D 0

v2 � v3 C v5 D 0

v6 � v4 � v5 D 0

The first question to ask is what is the minimum number of fluxes that need
to be measured so that the reminder of the fluxes can be estimated? Since
there are three equations and six unknowns, at least three of the fluxes
must to be measured so that number of unknowns can be reduced to three.
However, of the six, which of the three fluxes should be measured? For
example, measuring v1, v2 and v4, will not help because it is not possible
to compute the others from these fluxes.

Box 5.3 Rank of a Matrix

Closely related to linear independence (Box 5.2) is the concept of Rank.
Consider the three vectors described in Box 5.2, Œ1;�1; 2�, Œ3; 0; 1� and
Œ9;�3; 4� and stack them one atop each other to form a matrix:24 1 �1 2

3 0 1

9 �3 4

35
then the Rank is simply the number of linear independent vectors that
make up the matrix. In this case the Rank is 2, because there are only
two linear independent row vectors in the matrix.

In order to answer this question let us divide the fluxes into two groups, call
one the measured fluxes (JM ) and the other the computed fluxes (JC ). The
computed fluxes will be calculated from some combination of the mea-
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Box 5.4 Elementary Matrices

Elementary matrix operations such as row exchange, row scaling or row
replacement can be represented by simple matrices called elementary
matrices, called Type I, II and III respectively. Elementary matrices
can be constructed from the identity matrix. For example a scaling
operation can be represented by an identity matrix by replacing one of
the elements of the main diagonal by the scaling factor. The following
matrix represents a type II matrix which will scale the second row of a
given matrix by the factor k: 241 0 0

0 k 0

0 0 1

35
Type I elementary matrices will exchange two given rows in a given
matrix and are constructed from an identity matrix where rows in an
identity matrix are exchanged that correspond to the rows exchanged in
the target matrix. The following type I matrix will exchange rows 2 and
3 in a target matrix: 241 0 0

0 0 1

0 1 0

35
Type III elementary matrices will add/subtract a given row in a target
matrix to another row in the same matrix. Type III matrices are con-
structed from an identity matrix where a single off diagonal element is
set to the multiplication factor and the specific location represents the
two rows to combine. If an elementary matrix adds a row i to a row
j multiplied by a factor ˛, then the identity matrix with entry i; j is
set to ˛. In the following example, the type III elementary matrix will
subtract five times the 2nd row from the 3rd row.241 0 0

0 0 1

0 �5 0

35
A particularly important property of elementary matrices is that they
can all be inverted. In addition, pre-multiplying by an elementary ma-
trix will modify the rows of a target matrix while post-multiplying will
operate on the columns.
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Box 5.5 Echelon Forms

There are two kinds of matrices that one frequently encounters in the
study of linear equations. These are the row echelon and reduced ech-
elon forms. Both matrices are generated when solving sets of linear
equations. The row echelon form is derived using forward elimination
and the reduced echelon form by Gauss-Jordan Elimination.

A row echelon matrix is defined as follows:

1. All rows that consist entirely of zeros are at the bottom of the matrix.
2. In each non-zero row, the first non-zero entry is a 1, called the leading
one.
3. The leading 1 in each row is to the right of all leading 1’s above it.
This means there will be zeros below each leading 1.

The following three matrices are examples of row echelon forms:241 4 3 0

0 0 1 7

0 0 0 0

35 �
1 1 0

0 1 0

� 241 5 3 0

0 1 7 2

0 0 0 1

35
The reduced echelon form has one additional characteristic:

4. Each column that contains a leading one has zeros above and below
it. The following three matrices are examples of reduced echelon forms:241 0 4 0

0 1 1 7

0 0 0 0

35 �
1 0 0

0 1 0

� 241 0 0

0 1 0

0 0 1

35
Sometimes the columns of a reduced echelon can be ordered such that
each leading one is immediately to the right of the leading one above
it. This will ensure that the leading 1’s form an identity matrix at the
front of the matrix. The reduced echelon form will therefore have the
following general block structure:�

I A

0 0

�
It is always possible to reduce any matrix to its echelon or reduced
echelon form by an appropriate choice of elementary operations. The
function rref() implemented in many math applications will generate
a reduced row echelon.



4.3. DETERMINED SYSTEMS 91

sured fluxes. Consider the system equation at steady state:

Nv D 0

Let us apply row reduction to the system equation until N is in reduced
echelon form (See Box 5.5). Since the right-hand side is zero, it remains
unchanged in the process. These operations lead to:�

I M

0 0

�
v D 0 (4.2)

The process is likely to result in column as well as row exchanges and as
a result the linearly independent columns will move to the left partition
forming the identity matrix and the linearly dependent columns will be
found in the partition corresponding to M . Let us partition the v vector to
correspond to the partitioning in the echelon matrix, so that:�

I M

0 0

� �
v1

v2

�
D 0

which when multiplied out gives v1 D �M v2. This implies that the flux
terms in the v1 partition correspond to the computed fluxes, JC , and v2 to
the measured fluxes, JM , that is JC D �M JM .

This relation describes a set of computed fluxes, JC , as a function of a
set of measured fluxes, JM via a transformation matrix, M . To follow
conventional notation, the term �M will be renamed to K0 (that is M D
�K0) so that

JC D K0 JM : (4.3)

and equation 4.2 can be reexpressed as:�
I �K0

0 0

� �
JC

JM

�
D 0 (4.4)

Returning to the example shown in Figure 4.3, let us apply a series of ele-
mentary operations to the stoichiometry matrix to reduce the stoichiometry
to its reduced echelon form (Equation 4.4):
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1. Start with the stoichiometry matrix.24 1 �1 0 1 0 0

0 1 �1 0 1 0

0 0 0 �1 �1 1

35
1. Multiply the 3rd row by -1.24 1 �1 0 1 0 0

0 1 �1 0 1 0

0 0 0 1 1 �1

35
2. Add the 2nd row to the 1st row.24 1 0 �1 1 1 0

0 1 �1 0 1 0

0 0 0 1 1 �1

35
3. Add the 3rd row times -1 to the 1st row.24 1 0 �1 0 0 1

0 1 �1 0 1 0

0 0 0 1 1 �1

35
4. And finally, exchange the 3rd and 4th columns.24 1 0 0 �1 0 1

0 1 0 �1 1 0

0 0 1 0 1 �1

35
These operations lead to the following reduced echelon matrix (leading
ones are shown in a darker gray):

Reduced Echelon D

v1 v2 v4 v3 v5 v624 1 0 0 �1 0 1

0 1 0 �1 1 0

0 0 1 0 1 �1

35 (4.5)
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Note that during the reduction, the third and forth columns were exchanged.
The partition that holds the identity matrix marks the computed fluxes
and the right-hand partition which holds the K0 matrix marks the mea-
sured fluxes. Thus the computed fluxes correspond to the independent
columns and the measured fluxes to the dependent columns. If we ex-
tract the K0 partition, equation 4.3 can be used to relate the computed to
the measured fluxes as follows:24v1v2

v4

35 D �
24 �1 0 1

�1 1 0

0 1 �1

3524v3v5
v6

35 (4.6)

Or

v1 D v3 � v6

v2 D v3 � v5

v4 D v6 � v5

This shows that in principle only v3, v5 and v6 need be measured from
which all remaining rates can be calculated. A visual inspection of the
pathway in Figure 4.3, will reveal this to be true, thus, v4 can be computed
from v5 and v6; v2 can be computed from v5 and v3; and lastly, v1 can be
computed from v2 and v4.

Software tools such as PySCeS [?] can be used to automatically compute
theK0 matrix along with an appropriately reordered stoichiometry matrix.
In summary, the method outlined above enables us to derive the minimum
set of fluxes to measure in order to determine all fluxes in an arbitrary
pathway.
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Linear Algebra of Determined Systems

An alternative but related approach to derive the computed from the mea-
sured fluxes is as follows. Let us assume we can reorder the columns of
the stoichiometry matrix so that all the dependent columns are moved to
the left-side of the matrix and the independent columns are moved to the
right-side of the matrix. Note this is the opposite order to the columns in
equations 4.5 and 4.2. Furthermore, let us also assume that the rows have
also been reordered so that the independent rows are moved to the top and
the dependent rows to the bottom of the matrix. We will consider the mean-
ing of the rows in a subsequent chapter. These prerequisites means that the
stoichiometry matrix has a partitioned structure shown in Figure 4.4.

n

m

NR

N0

m0

m0n0

N = 

NICNDC

Figure 4.4 Partitioned Stoichiometry Matrix: n D number of reactions;
m D number of species; NDC D partition of linearly dependent columns;
NIC D partition of linearly independent columns; NR D reduced stoi-
chiometry matrix; N0 partition of linearly dependent rows.
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We don’t prove it here but it is possible to show that that at steady state:�
NR

� � JM

JC

�
D 0

NR can be partitioned as shown in Figure 4.4:�
NDC NIC

� � JM

JC

�
D 0

whereNDC represents the set of linearly dependent columns andNIC the
set of linearly independent columns. To reemphasize again, the order of
the computed and measured fluxes are swapped compared to that shown in
equation 4.4.

Multiplying out this equation gives NDC JM C NIC JC D 0. This
equation can be rearranged and both sides multiplied by the inverse of
NIC to obtain:

JC D �.NIC /
�1 NDC JM (4.7)

This result gives us a relationship between the computed and measured
fluxes. The term �.NIC /

�1 NDC can be replaced by, K0, so that JC D

K0 JM . This equation is identical to equation 4.3 but offers an alternative
approach to computingK0 and is the method often cited in the literature [?,
?]. The inverse of NIC is guaranteed to exist because the matrix is square
and all rows and columns are guaranteed by construction to be linearly
independent.

The equation, K0 D �.NIC /
�1 NDC can be rearranged into the follow-

ing form: �
NDC NIC

� � I
K0

�
D 0 (4.8)

or more simply:
NR K D 0 (4.9)

This shows that the K0 matrix is related to the null space of the reordered
stoichiometry matrix.

Examples
The following examples illustrate the application of equation 4.7.
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a) Consider the branched pathway shown in Figure 4.3. The columns of
the stoichiometry matrix can be reordered so that the linearly dependent
columns (NDC ) are first, followed by the linearly independent columns
(NIC ). Row reduction to the reduced echelon form (equation 4.4) can
be used to determine which are the linearly independent and dependent
columns (equation 4.5). In the stoichiometry matrix below, the partitions
have been exchanged so that the linearly independent columns are first,
followed by the linearly dependent columns:

N D

v3 v5 v6 v1 v2 v424 0 0 0 1 �1 1

�1 1 0 0 1 0

0 �1 1 0 0 �1

35
From the reordered matrix, the NDC and NIC partitions can be extracted
from which the dependency relations can be derived by applying equa-
tion 4.7.

K0 D �

24 1 �1 1

0 1 0

0 0 1

35�124 0 0 0

�1 1 0

0 �1 1

35 D
24 1 0 �1

1 �1 0

0 �1 1

35
The derived K0 corresponds to the same result found in equation 4.6.

b) A more complex example of a pathway is shown in Figure 4.5. The
stoichiometry matrix for this network is given by:

N D

26666664

v1 v2 v3 v4 v5 v6 v7 v8 v9

A 1 �1 �1 0 0 0 0 0 0

B 0 1 0 �1 0 �1 0 0 0

C 0 0 1 0 0 1 �1 0 0

D 0 0 0 2 0 0 1 �1 0

E 0 0 0 �1 1 0 0 0 0

F 0 0 0 0 0 1 0 0 �1

37777775
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A

B

C

D

E

F

v1

v2
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Figure 4.5 Complex Network incorporating two input fluxes and two out-
put fluxes, coupled internally by multiple branches and one reaction that
exhibits non-unity stoichiometry (v4).

and the balance equations by:

v1 � v2 � v3 D 0 v2 � v4 � v6 D 0

v3 C v6 � v7 D 0 2v4 C v7 � v8 D 0

v5 � v4 D 0 v6 � v9 D 0

Let us reorder the columns of the stoichiometry matrix so that the linearly
dependent columns are on the left and linearly independent columns are
on the right (Figure 4.4). Note that all the rows are linearly independent
so that there is no N0 partition in the reordered matrix. Reordering can
be accomplished by carrying out a row reduction on the matrix to reduced
echelon form (equation 4.2) and recording the column changes in the stoi-
chiometry matrix. Note that the partitions must be exchanged to match the
structure shown in equation 4.8. The simplest reordering is given by the
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following stoichiometry matrix:

N D

26666664

v7 v8 v9 v1 v2 v3 v4 v5 v6

A 0 0 0 1 �1 �1 0 0 0

B 0 0 0 0 1 0 �1 0 �1

C �1 0 0 0 0 1 0 0 1

D 1 �1 0 0 0 0 2 0 0

E 0 0 0 0 0 0 �1 1 0

F 0 0 �1 0 0 0 0 0 1

37777775
TheK0 matrix can be computed from the null space (4.9) of this reordered
matrix:

K D

26666666666666666664

v7 1 0 0

v8 0 1 0

v9 0 0 1

v1 0:5 0:5 0

v2 �0:5 0:5 1

v3 1 0 �1

v4 �0:5 0:5 0

v5 �0:5 0:5 0

v6 0 0 1

37777777777777777775

K0 D

266666666664

v1 0:5 0:5 0

v2 �0:5 0:5 1

v3 1 0 �1

v4 �0:5 0:5 0

v5 �0:5 0:5 0

v6 0 0 1

377777777775

From the K0 matrix the relation between the measured and computed
fluxes can be determined. From the reordering of the stoichiometry matrix
it should be apparent that the measured fluxes are v7, v8, and v9, that is
a minimum of three fluxes must be measured in order to fully determine
the remainder. Of the three measured fluxes, v7 is the most problematic
because it is an internal flux which experimentally would not be easy to
determine. It is however possible to derive other combinations of measured
and computed fluxes. Most notable is the following list of independent
fluxes, v5, v8 and v9. All three are edge fluxes which in principle are
easier to measure.
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The stoichiometry matrix can be reordered as follows:

N D

26666664

v5 v8 v9 v6 v2 v3 v4 v1 v7

A 0 0 0 0 �1 �1 0 1 0

B 0 0 0 �1 1 0 �1 0 0

C 0 0 0 1 0 1 0 0 �1

D 0 �1 0 0 0 0 2 0 1

E 1 0 0 0 0 0 �1 0 0

F 0 0 �1 1 0 0 0 0 0

37777775
which yields the following K0 matrix from the null space:

K0 D

26666664

v6 0 0 1

v2 1 0 1

v3 �2 1 �1

v4 1 0 0

v1 �1 1 0

v7 �2 1 0

37777775
In turn this gives the dependency equations using equation 4.3:

v6 D v9

v2 D v5 C v9

v3 D v8 � v9 � 2 v5

v4 D v5

v1 D v8 � v5

v7 D v8 � 2 v5

In summary, measuring only v5, v8 and v9 allows us to completely de-
termine all the fluxes in the network. Unfortunately in real systems the
internal structure of the network will be much more complex and will in-
clude many more degrees of freedom. This means that in many cases there
will be insufficient information to fully determine the internal fluxes. Such
cases are called underdetermined systems and alternative strategies must
be used to gain access to the unknown fluxes. Two common strategies to
the study of underdetermined systems include flux balance analysis and
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metabolic flux analysis. Flux balance analysis relies on linear program-
ming while metabolic flux analysis uses 13C -labeled substrates to estimate
fluxes.

4.4 Flux Balance Analysis

The previous section described how one can determine the set of com-
puted and measured fluxes and how to calculate one set from the other. It
assumed that it was possible to measure all the measured fluxes. However
it is often the case that experimentally it is very difficult to measure all the
required measured fluxes. In this situation, the problem becomes under-
determined and alternative strategies are required to determine the fluxes
in a pathway. One method is to use linear programming. By its nature,
linear programming only gives an estimate of the fluxes and predictions
based on linear programming should be supported by additional measure-
ments, however the approach has proved to be popular in the metabolic
community [?].

Linear programming is an optimization method that requires two inputs,
a linear objective function that is generally a sum of terms that contains
weighted measurable elements from a metabolic model and a set of lin-
ear constraints. The maximizing linear programming problem can be ex-
pressed by the relations shown in equation 4.10.

There are a number of algorithms that can be used to solve linear program-
ming problems, but by far the most popular is the simplex method – not
to be confused with the simplex method developed by Nelder and Mead
for solving nonlinear optimization problems. The simplex method can be
motivated by a simple example.

Consider a pharmaceutical company that manufactures two drugs, say x
and y, from two genetically engineered organisms, A and B. Let us assume
that organism A can produce at maximum 4 kg of drug x per day and
organism B a maximum of 2 kg of y per day. Let us also assume that
the factory can only process a total of 5 kg of any drug per day due to
packaging equipment limitations. If the company can make a profit of
$100 per kg for drug x and a profit of $150 per kg for drug y, what is
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Maximize: Z D c1x1 C c2x2 C � � � D cTx

Subject to:

a11x1 C a12x2 C � � � C a1nxn � b1

a12x1 C a22x2 C � � � C a2nxn � b2

:::

am1x1 C am2x2 C � � � C amnxn � bm

Or: Ax � b

where all: xi � 0 (4.10)

the optimal rate at which each drug should be manufactured in order to
maximize profit?

This problem is sufficiently small that it can be easily solved manually.
To maximize profit, it would be prudent to first produce the maximum
amount of most profitable drug first, y, then to use what ever spare capacity
remains in the packaging department to manufacture drug x. This would
mean producing 2 kg per day of drug y, which leaves 3 kg capacity left in
the packaging department to produce 3 kg per day of drug x. Therefore
the total profit for this scenario is 2 � 150C 3 � 100 D $600.

The problem of drug manufacture allocation can be easily expressed as a
linear programming problem. For example, the objective function for the
problem is to maximize profit, that is to maximize:

Maximise: Z D $100 � x C $150 � y

The constraints on the problem can also be easily expressed. For example,
the quantity of drug manufactured cannot be negative, that is:

x � 0 and y � 0

In addition, the problem states that a maximum of 4 kg of x can be manu-
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factured per day and a maximum of 2 kg of y per day, that is:

x � 4 and y � 2

Finally, the packaging department can only process a maximum of 5 kg
per day, that is:

x C y � 5

This problem can be reexpressed in graphical form as shown in Figure 4.6.
The figure plots all the linear constraints that define the problem, including,
x � 4, y � 2 and x C y � 5. The limits of the object function is indi-
cated by the hashed line. Points where two or more constraints intersect
are called cornerpoints or vertices. Figure 4.7 illustrates the feasible solu-
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Figure 4.6 Linear Programming: Constants displayed as edges on a graph
for the drug manufacturing problem.

tion bounded by the constraints and the maximum value of the objective
function. The simplex method works by traversing the cornerpoints one by
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one. The method first starts at one of the cornerpoints, say cornerpoint 1


and then attempts to move to an adjacent cornerpoint which yields a better
value for the objective function. If the method is unable to move to a better
objective function it stops and reports the last cornerpoint as the optimal
solution. For example, the value of the objective function at cornerpoint
1
 is 400 dollars. An adjacent cornerpoint is cornerpoint 2
. The value of

the objective function at this point is $550. Since the objective function at
the new cornerpoint is larger, the method moves to this cornerpoint. From
the second cornerpoint the method moves to the next adjacent cornerpoint,
cornerpoint 3
. The value of the objective function at cornerpoint 3
 is
$600. This again is larger than the value at cornerpoint 2
. Once again,
the method moves to the next adjacent cornerpoint, cornerpoint 4
. The
value of the objective function at 4
 is $300 which is less that the value
at 3
. Since there are no other cornerpoints to traverse, the method stops
and assigns the optimal value at $600 on cornerpoint 3
. When a single
point is located it represents a unique solution. However, it is possible
for optimum solutions to lie on a line that joins two cornerpoints, that is
two cornerpoints yield the same value for the objective function. In higher
dimensions, optima may lie on hyperplanes connecting multiple corner-
points. In such situations the solution is termed degenerate because there
are now an infinite number of optimal solutions and other non-quantifiable
criterion may be used to judge the ‘best’ solution. For example, a degener-
ate solution may indicate that two different combinations of drug x and y
are equally profitable. However, one of the drugs may have toxicity issues
in which case the optimum with the lowest level of this drug is better.

Another important aspect that Figure 4.7 illustrates what would happen to
the optimal solution if the constraints change. This question leads to the
idea of sensitivity and what are called shadow prices. A shadow price is
the change in the optimal solution if a constraint is changed by one unit.
For example what would happen to the optimal solution if the manufac-
ture of drug y were to be increased from 2 to 3 kgs per day? Sensitivity
analysis can answer these questions and provide additional information on
interpreting the optimal solutions and to gauge how robust the solutions
are to the constraints and/or objective function.

The drug manufacturing example was a relatively simple problem and
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could be solved without recourse to the simplex method. For larger prob-
lems, particulary as the number of variables increases, the number of cor-
nerpoints rises considerably. In addition, rather than being a simple two
dimensional problem real problems are invariable hyper-dimensional. Lin-
ear programming is therefore rarely done by hand, instead software is em-
ployed to find solutions. Given the popularity of linear programming in
general, there is a very wide range of software tools available, including
well known tools such as Excel, Matlab and Mathematica or more spe-
cialized tools such as LINDO http://www.lindo.com or CPLEX http:

//www.ilog.com. However there is also a wide range of equally good
open source alternatives. Probably the most notable of these include the
GNU Linear Programming Kit (GLPK) or better still the lp_solve library
by Peter Notebaert. lp_solve is notable for a number of reasons, its li-
cence is less restrictive (LGPL) and there are language bindings that allows
lp_solve to be easily called from many different computer languages, in-
cluding for example, Java, Delphi, C#, Matlab, Excel, Python and SciLab.
Both GLPK and lp_solve have a very active community forums. One en-
terprizing individual (Henri Gourvest) has written an excellent graphical
front end to lp_solve, called the LPSolve IDE. This front-end makes it
very easy to specify the objective function and constraints and solve the
linear programming problem with the press of a single button. Further
discussion of LPSolve IDE will be given in the next section.

Objective Functions

The choice of objective function is critical for the linear programming ap-
proach to be effective and there has been much discussion in the literature
on what a suitable objective function might be for biological systems. For
example, one of the earliest reported efforts to use linear programming in
metabolic modeling was by Fell and Small [?]. These authors investigated
fat synthesis in adipose tissue, and used a variety of objective functions,
include minimizing the amount of glucose used per triacylglycerol formed
or maximizing the generation of NADH from the pentose pathway. The
authors subsequently used the model to study how the efficiency of con-
version was affected by the availability of ATP.

http://www.lindo.com
http://www.ilog.com
http://www.ilog.com
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One of the early attempts to determine the flux distribution in E. coli was
conducted by Palsson’s group [?, ?, ?]. An objective function used in this
work involved maximizing the production of biomass, the assumption be-
ing that growing single celled organisms have been selected for growth
(Unlike cells in multicellular organism where the objective function is
more obscure). In order to relate biomass to a metabolic map, the authors
obtained data [?, ?] that described how 1 gram of E. coli biomass was de-
rived from various metabolic precursors and cofactors (See Table 4.1). The
objective function used to optimize the flux distribution was then defined
as the sum of all the fluxes that produce each of the precursors, weighted
by the amount of precursor required. Thus, a suitable objective function

Metabolite Demand (mmol)

ATP 41.2570
NADH -3.5470
NADPH 18.2250
G6P 0.2050
F6P 0.0709
R5P 0.8977
E4P 0.3610
T3P 0.1290
3PG 1.4960
PEP 0.5191
PYR 2.8328
AcCoA 3.7478
OAA 1.7867
AKG 1.0789

Table 4.1 Number of mmoles of precursors and cofactors that are required
to yield 1 gram of biomass of E. coli [?, ?]
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may be written as:

Z D 41:257 vATP �3:547 vNADH C18:225 vNADH C0:205 vG6P C : : :

The use of this objective function yielded results which overdetermined
the experimentally determined glucose yield. This suggested that the stoi-
chiometry model was missing an important component. In order to correct
the discrepancy, the authors introduced ATP maintenance into the calcu-
lation since cells will use energy not just to achieve growth but also to
maintain other non-growth functions such as maintenance of transmem-
brane gradients and cellular motility. The addition of ATP maintenance
into the calculation yielded better estimates for glucose yield.

Another but quite different example of an objective function relates to the
flux balance analysis of the mycolic acid pathway in Mycobacterium tuber-
culosis. In the work by Raman et al [?], the authors selected an objective
function based on maximizing the different proportions of mycolates that
make up the cell wall. Given that cell wall composition is important to the
structural integrity of the cell wall, optimal production of mycolates would
appear to be an appropriate optimum for the organism to achieve. With
the objective function set, linear programming then requires a set of linear
constraints that will restrict the limits of the objective function and allow
one to find the maximum.

Flux Balance Constraints

In addition to an objective function, linear programming also requires a
set of constraints to limit the scope of the solution space. Of these, the
most important group are the steady state constraints on the pathway, that
is Nv D 0. There is one restriction on the steady state constraints, all rates
must be positive. This means that reversible reactions must be split into
their separate forward and reverse reactions.

In addition to the steady state constraints, other constraints can be added
to the mix. The most common of these include constraints on the values
of the external fluxes. Such fluxes, which might include nutrient uptake
or oxygen consumption, will most likely be known and will contribute an
important source of constraints on the model.
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Other constraints include thermodynamic and capacity constraints. Capac-
ity constraints impose upper bounds on a flux (0 � vi � bi ). Such limits
can be set by the Vmax of the enzyme catalyzing the reaction. Sometimes
lower bounds may be set so that in general capacity constraints are set
with the inequality (ai � vi � bi ). In addition some reaction steps un-
der specific growth conditions may be absent all together due to catabolite
repression, the rates through such reactions can be constrained to zero.

Thermodynamic constraints are more difficult to set and require the use of
plausible ranges for metabolite levels. Thermodynamic constraints attempt
to impose flux directions that are consistent with changes in the Gibb’s free
energy across each reaction which naturally require knowledge of metabo-
lite levels (ref).

Finally, there will sometimes be available internal fluxes that have been
measured. This means that such reactions have specific rates and can be
added to the list of model constraints.

Through a judicious use of constraints it is possible to reduce the solution
space and thus improve the reliability of the optimized solution.

In summary, a linear programming problem for estimating the fluxes in a
metabolic pathway takes the form:

Maximize: Z D civi C cj vj C � � �

Subject to: Nv D 0

where: v � 0 (4.11)

Example

Consider again the network shown in Figure 4.5. Let us assume that only
v5 and v1 have been measured. Clearly there is insufficient information
to compute the remaining fluxes in the pathway without recourse to linear
programming. To solve the problem using linear programming, an objec-
tive function and a set of constraints will be required. For illustration, the
model will be optimized for maximum production of biomass and for the
sake of argument let us assume that fluxes v8 and v9 contribute to biomass.
The objective can then be some weighted sum of the fluxes that contribute
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to biomass, that is Z D c1v8 C c2v9.

As for the constraints, the most important are the steady state conditions on
each of the nodes in the network. In this case the steady state constraints
include:

v1 � v2 � v3 D 0

v2 � v6 � v4 D 0

v3 C v6 � v7 D 0

2v4 � v8 C v7 D 0

v5 � v4 D 0

v6 � v9 D 0

Two other constraints include the measured fluxes on v1 and v5. For il-
lustration assume that v1 D 10 flux units and v5 D 6 flux units. This
sets up the problem. Figure 4.8 shows a screen-shot of the LPSolve IDE
software where the problem has been setup. The following code illustrate
the problem expressed in the script language used by LPSolve.

/* Objective function */

max: 0.5*v9 + 0.75*v8;

/* Steady State Constraints */

v1 - v2 - v3 = 0; /* A */

v2 - v4 - v6 = 0; /* B */

v3 + v6 - v7 = 0; /* C */

v6 - v9 = 0; /* F */

v5 - v4 = 0; /* E */

2 v4 - v8 + v7 = 0; /* D */

/* Known Flux Constraints */

v1 = 10;

v5 = 6;

v3 >= 1;
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4.5 Isotopic Flux Measurements

In the previous section linear programming and its application to flux bal-
ance analysis was described as a method for estimating fluxes in unde-
termined systems. The method carried with it a number of assumptions,
one in particularly was the choice of objective function which can in some
systems be difficult to describe or justify. In addition, flux balance anal-
ysis has difficulties in estimating the fluxes in certain cases without more
information, in particular the flux in parallel pathways, metabolic cycles
such as futile cycles, and cofactor linked cycles cannot always be resolved
by the method (See Figure 4.9). For this reason, other more experimen-
tally based approaches have been devised to try and gather data on fluxes
more directly. The most important approach by far is the use of isotopic
tracer techniques, often referred to as metabolic flux analysis or MFA.
The method proceeds in two phases, one experimental and another compu-
tational. The computational analysis is very important as the data analysis
is complex owing to the size of the data sets and the resulting combinatory
expansion of the system equations. Let us first consider the experimental
phase.

Isotopes are atoms that have the same number of protons but differ in the
number of neutrons. For example, carbon has three naturally occurring
isotopes, the common and stable 12C (6 protons and 6 neutrons), the sta-
ble and relatively uncommon ( 1%) 13C (6 protons and 7 neutrons) and
trace amounts of radioactive 14C (6 protons and 8 neutrons), Table 4.2. In
practice a given substrate, such as glucose will be labeled, that is one or
more of the atoms in the glucose molecule will be replaced by a different
isotope. For example, the 12C on position one might be replaced with an
atom of 13C. In this case the glucose is referred to as [1-13C]glucose to dis-
tinguish it from natural glucose. The main advantage to using isotopes
is that they can be measured, that is in a mixture of labeled and unlabeled
glucose it is possible to distinguish between the two molecules. The way
labeled molecules are identified depends on whether radioactive or stable
isotopes are used. Radioactive isotopes can clearly be identified by their
decay emissions, for example ˇ decay in 14C and 3H by using scintilla-
tion counters. The advantage to using radioactive isotopes is their great
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Table 4.2 Isotopes commonly used in biological research.

Common Isotope Rare Stable Isotope Radioactive Isotope
1H 2H (0.02%) 3H
12C 13C (1.1%) 14C
14N 15N (0.37%) 13N
16O 18O (0.04%) 11O

sensitivity. However they are also difficult to handle due to the radiation
hazard.

Stable isotopes can be identified by measuring the difference in mass be-
tween labeled and unlabeled molecules using mass spectroscopy combined
with gas chromatography (GC/MS). Gas chromatography is used to sep-
arate the initial mixture of compounds based on differential equilibration
between a gas and solid phase. Once separated, each compound is fed into
the mass spectrometer where each compound is broken into fragments by
an electron beam. The fragments, now charged, are first accelerated in an
electric field that travel through a magnetic field on a circular path. The
path that an individual fragment actually takes will depend on its charge
and mass. The end result is a MS spectrum which records the relative pro-
portion of the different fragments that were detected. If similar fragments
contain different isotopes then different peaks will emerge in the spectrum
and the proportion of the different labeled compounds can be determined.
The introduction of high performance GC/MS in the last 10 years or so has
revolutionized metabolic flux analysis and is now probably the preferred
choice for estimating fluxes.

The basis for MFA is that when a labeled substrate is fed to an organism,
the labeled atoms distribute themselves throughout the chemical compo-
sition of the organism. In microbial studies, commonly used substrates
include specifically labeled glucose such as [1-13C]glucose, uniformly la-
beled glucose ([U-13C]glucose) or labeled amino acids. Once adminis-
tered, the labeled molecules are metabolized by the organism and through
various metabolic processes the atoms in the labeled substrate are rear-
ranged by separation and recombination of molecular fragments. In ad-



4.5. ISOTOPIC FLUX MEASUREMENTS 111

dition some labeled isotope is either lost as metabolic waste, for example,
CO2 or incorporated into biomass. Assuming no further changes take place
and the substrate is constantly applied, the distribution of the isotopes will
reach what is called isotopic steady state. This can occur quite rapidly in
about an hour. Once in isotopic steady state, GC/MS or NMR is used to
determine how the label has been distributed in the various metabolites of
interest. This is the raw data that is used to determine the fluxes through
the various pathways.

In order to understand the process of generating fluxes from the isotopic
data a number of terms must first be defined and understood.

Isotopomer One of the most important concepts in MFA is the isotopomer.
Consider a molecule of alanine which has three carbon atoms; there are
eight different ways to label a three carbon alanine molecule, Figure 4.10.
As label enters the metabolic pathways from an external source there is the
potential for the label to partition itself into every possible isotopomer. In
general for a molecule with n potentially labeled atoms there will be 2n

different isotopomers, for example alanine with three atoms has 23 D 8

possible isotopomers. Most often it is the relative mole fraction of iso-
topomers for a given molecular type that is considered and the vector of
that holds the fractional contribution of each isotopomer is usually called
the isotopomer distribution vector, or IDV. Mass Distribution Vector
Another useful concept is the mass distribution vector, often abbreviated
to MDV in the literature. An element from the mass distribution vector
gives the proportion of mass in a group of isotopomers of the same mass.
For n potentially labeled atoms in a molecule there will be nC 1 elements
in the MDV. TheC1 element corresponds to the fully unlabeled molecule.

Figure 4.11 illustrates the relationship between the IDV and MDV mea-
sures. The key reason for considering these two different descriptions is
that the MDV are measurable while the IDV are on the whole more difficult
to obtain experimentally, although a careful study of the fragmentation pat-
terns from the mass spectrometry can sometimes give information on the
IDV itself. In addition NMR can also be used to gain some information
on the relative distribution of specific isotopomers, but the MDVs are the
primary experiential data. Figure 4.12 shows a simple hypothetical net-
work that illustrates three ways to view a such a network, as a stoichiomet-
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ric network, as an atom transition network and as a isotopomer network.
The stoichiometric network, a), is the simplest and most familiar, with six
species and five connecting reactions. If we assume that the species, A, B,
E, and F contain two atoms that could be potentially labeled, and species
C and D contain one atom each that could be potentially labeled, then b) in
Figure 4.12 shows the species with their atomic structure explicitly given,
hence the atom transition network. Panel c in Figure 4.12 shows the iso-
topomer network. For example, molecule A has two carbon atoms that can
be labeled therefore there are four possible isotopomers which are indi-
cated by four blocks. The point of the figure is that it shows the increase
in complexity when we consider the individual isotopomers, in this case
in increase from six species to twenty. For a complex pathway the number
of distinct species can explode to many thousands. In the computational
phase each of these distinct species is modeled resulting in a large number
of differential equations.

A number of assumptions are invoked in order for the subsequent analysis
to be valid. The most important is that the system is at steady state, that is
the fluxes and the isotopic distribution are steady. Some of the fluxes in the
system can be measured directly, for example most of the external fluxes
such as substrate uptake and product and biomass formation are known.
What is left are the intracellular fluxes and it is these that will be estimated
from the isotopic data.
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Figure 4.12 Label distribution in a simple network: a) Stoichiometry net-
work, b) Atom transition network, c) Isotopomer network. Figure adapted
with permission from Weitzel et al. [?], BioMed Central

The second phase in MFA is the computational effort. This is a fairly
sophisticated and computationally intensive procedure. Here we describe
the basic approach but many refinements have been introduced in recent
years [?, ?, ?].

The essential idea behind the computational phase is the construction of
a set of differential equations that describe the time evolution of the iso-
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topomer distribution vector. These equations include two kinds of terms,
fluxes and elements from the isotopomer distribution vector. The equa-
tions are used to predict the steady state levels of the various isotopomers,
or more precisely the fractional distribution of the isotopomers at steady
state. The nature of these equations will be described more fully later, for
now let us designate the isotopomer distribution vector with the symbol p
so that the set of differential equations can be written as:

dp
dt
D f .p;J /

At steady state the left-hand side is zero and the isotopomer can be written,
at least in principle, as a function of the fluxes, J .

p D g.J /

We say in principle because the equations will tend to be non-linear, ren-
dering an analytical solution difficult if not impossible to obtain, instead
numerical methods are used to find the solution, p. Once a solution has
been found, the vector p is compared to the real measurements and a dif-
ference computed. The procedure now makes small adjustments to the
flux values and the steady state equations is solved again to obtain a new
p vector. If the difference between the new values and the measured val-
ues is small then the flux values are accepted and the procedure repeated
otherwise the fluxes are adjusted again. The actual strategy for adjusting
the fluxes will be described later but what we have is an iterative proce-
dure where the flux values are adjusted until the measured values of the
isotopomers match the computed values. The procedure just outlined is
of course a classic optimization problem and many strategies exist for ad-
justing the flux values at each iteration including gradient search methods
such as Levenberg-Marquardt or better still evolutionary algorithms [?, ?]
that are less likely to fail to converge.

In practice the measured values for the isotopomer distribution are not usu-
ally available, instead the model values are converted to the mass distribu-
tions and it is these that are compared to the measured mass distributions.
One can imagine that in a large network, particularly where the metabo-
lites have many potentially labeled atoms (say six or more carbon atoms)
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then the number of isotopomers can become very large with a correspond-
ing increase in the number of model differential equations. Large models
can have thousands of differential equations that need to be solved at each
iteration. The computational cost is therefore relatively high although with
the availability of cheap and powerful personal computers the issue is not
so significant as it used to be.

One question remains which relates to the exact nature of the model equa-
tions that are used to predict the isotopomers. Of all the steps required
during the computational phase, generating the model equations is prob-
ably the most tedious and error prone, especially given the large number
of equations that need to be deployed. With this in mind a number of au-
thors have devised specialized software that can automate this phase and
much else. Here a brief description of the equations themselves will be
given. What may not be obvious is that the model equations do not as-
sume any kinetics from the reaction steps themselves, that is there are no
rates that depend on Michaelis-Menten rate laws or other more compli-
cated functions. Instead linear equations are devised that assume that the
rate of reaction between two particular label molecules is a linear function
of the isotopomer concentrations. This is possible because the underlying
metabolic state is assumed to be at steady state. In addition, the individual
rates are simply scaled terms containing the fluxes.

Consider the system depicted in Figure 4.13. The overall reaction is given
as A! B! 2 C in the upper panel. In the lower panel we see the individ-
ual species represented by their groups of isotopomers. For simplicity the
species are assumed to only contain two potentially labeled carbon atoms.
The first reaction, v1 swaps the carbon atoms and the second reaction, v2,
dissociates the species into two one carbon units, C and D. The fractional
distribution of isotopomers in the A species is given by A1 and A2, and in
the B species by B1 and B2. Note that in each case the following is also
true, A1 C A2 D 1 and B1 C B2 D 1.
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Figure 4.13 v1 swaps the two atoms in the molecule, v2 dissociates the
two atoms. Ai and Bi are the proportion of mass in each group of iso-
topomers. For example v1A1 equals the proportion of reaction velocity
that is associated with the A1 isotopomer.

At steady state the flux from species A to B and from species B to C plus
D is v1 and v2 respectively, these are the fluxes we would like to know.
However the isotopomer computational model considers each isotopomer
reaction transition as a separate reaction such that the rate from from one
isotopomer to another is proportional to the fraction of isotopomer.

For example, the rate of reaction from isotopomer A1 to B1 is the fraction
of the overall rate, v1A1. Likewise for the other isotopomers. For this
system, the rate of change of the fraction B1 and B2 is then give by:

dB1

dt
D v1A1 � v2B1

dB2

dt
D v1A2 � v2B2
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Note that these equations compute the rate of change on the fraction of
isotopomers, not the absolute amount of isotopomers. This approach elim-
inates the need for a complex kinetic model whose construction would be
extremely difficult to construct and suspect at best.

The computational effort required to estimate the fluxes are as formidable
as the experimental effort and for this reason a number of authors have
devised software for the automatic construction and solution to the equa-
tions. One of the earliest and most comprehensive is the software tool by
Wiechert [?], 13C-FLUX1 who was one of the pioneers in developing the
current state of MFA [?, ?, ?]. Other tools of note include FluxSimulator
from Binsl ([?]) and FiatFlux from [?].

There are many other details of MFA that have not been mentioned and
the area is still under rapid development with an ever increasing number of
researchers turning to use the approach to estimate fluxes [?, ?, ?, ?].

Further Reading

1. Wiechert W. (2001) 13C metabolic flux analysis. Metabolic Engi-
neering Jul;3(3):195-206.

2. Stephanopoulos, Gregory (1998). "Chapter 9: Methods for the Ex-
perimental Determination of Metabolic Fluxes by Isotope Labeling".
Metabolic engineering: principles and methodologies. San Diego:
Academic Press. pp. 356Ű404. ISBN 0-12-666260-6.

1see http://www.uni-siegen.de/fb11/simtec/software/13cflux/

http://www.uni-siegen.de/fb11/simtec/software/13cflux/
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Figure 4.7 Linear Programming: Area within the confinement of the con-
straints is marked as the feasible region. All potential solutions to the
problem reside in this region. Linear Programming attempts to locate the
optimum solution within this region given an objective function. The sim-
plex method moves from cornerpoint (vertex) to cornerpoint searching for
the maximum value of the objective function. In this problem, the third
cornerpoint indicates the optimal solution.
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Figure 4.8 LPSolve IDE used to model a simple metabolic model prob-
lem. Available from http://lpsolve.sourceforge.net/5.5/IDE.

htm

http://lpsolve.sourceforge.net/5.5/IDE.htm
http://lpsolve.sourceforge.net/5.5/IDE.htm


120 CHAPTER 4. FLUX CONSTRAINTS

a1
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a) b) c)

Figure 4.9 Typical situations where linear programming based flux bal-
ance analysis cannot resolve fluxes: a) Parallel pathways; b) Metabolic
Cycles; c) Pathways with closed cofactor cycles.
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Figure 4.10 Alanine is a three carbon amino acid. If Alanine were la-
beled with 13C, there would be eight possible different labeling patterns.
These different labeled forms are call Isotopomers. For a molecules with
n potentially labeled atoms, there will 2n possible isotopomers.
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Isotopomers

C1

C2

C3

9% 5% 23% 5% 36% 4% 9% 9%

9% 33% 9%49%

Isotopomers
Fractions (IDV)

Mass Distribution 
Vector (MDV)

Figure 4.11 This figure illustrates the relationship between the isotopomer
fraction (IDC) and the mass distribution vector (MDV). The example uses
a three carbon molecule of which there are eight possible isotopomers.
For each labeled molecule there is a fraction that is labeled, for exam-
ple the unlabeled molecule is 9% of the total fraction. To compute the
mass distributions, we collect all isotopomers having the same number of
labeled atoms, for example, the 2nd, 3rd and 4th isotopomers have one
labeled atom each, therefore this group constitutes a particular element in
the MDV, in this case 33%
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Metabolic Control Analysis
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Preface to Part II

Metabolic control analysis (MCA) is a general approach to understanding
how perturbations propagate through a biochemical network. Although
called metabolic control analysis, the approach applies equally well to
gene regulatory and protein signaling networks. Historically, during the
inception of MCA, the focus was on metabolic systems and the name
metabolic control analysis seems to have stuck. Ideally it should be called
biochemical control analysis but it’s difficult to change something after it
has been used for so long. Savageau who developed Biochemical Systems
Theory in the US, roughly an equivalent approach to MCA, was forward
thinking enough to realize that the approach was quite general and not just
restricted to metabolic systems. In this book I will use the notation that
the Kacser/Heinrich groups in Europe developed rather than the notation
developed by Savageau. There are two reasons for this, one is my own
familiarity with the European notation; secondly, and this is no criticism
of Savageau’s work, the European model has been developed much more.
I think this has partly to do with cultural differences. Having living the US
for over 12 years, I have found that the American culture is very practical
and invention orientated and theory is not as important. Savageau’s work,
which was largely theoretical, therefore languished in somewhat obscurity
in the US whereas MCA was of more interest in Europe.
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5
Elasticities

5.1 Introduction

Enzymes catalyze virtually all the chemical transformations of metabolism.
They coordinate all the primary activities of a cell, ranging from energy
transformations and storage, through to maintenance of cellular structure
and integrity. They manage directly the expression and maintenance of the
host DNA, including replication. Enzymes clearly serve an essential and
fundamental role in the activity of a cell and for this reason we can regard
them as the fundamental units of life. If we are to understand how cel-
lular systems work an appreciation of the properties of these fundamental
units is obviously essential. This first section will focus attention on the
properties of the isolated enzymes and only later will intact pathways be
considered.

In traditional enzyme kinetics the emphasis has been on mechanism, cul-
minating in the derivation of an algebraic rate law describing the rate of
reaction in terms of concentrations and kinetic constants.

The approach that MCA takes is quite different, empathizing instead the
response of enzymes to changes in their environment. Where enzyme ki-
netics essentially stops at the rate law, MCA begins it journey. MCA is

127
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concerned with responses, so instead of asking how a reaction rate de-
pends on a concentration or kinetic constant, MCA considers how the rate
of a reaction responds to changes in concentrations and kinetic constants.

Since enzymes are the functional units of metabolism, it is important to
understand how an enzyme responds to changes in its environment and
an important part of MCA is the consideration of this question. In MCA
the measure that describes this response is called the elasticity coefficient.
Elasticity coefficients are so important to MCA that the remainder of the
chapter is devoted to their discussion.

Elasticities describe how sensitive a reaction rate is to changes in reactant,
product and effector concentrations. They represent the degree to which
changes are transmitted from the immediate environment to the reaction
rate. From a systems perspective they are critical components in under-
standing how a disturbance, such as the introduction of a drug applied at
one or more points in a cellular pathway, propagates to the rest of the sys-
tem. It is the magnitude and signs of the elasticities that determines how
far and at what strength the disturbance travels. Elasticities are therefore
central in helping us understand how networks function. In this chapter
we will focus on describing the properties of elasticities, how they can be
computed and used to describe changes at a reaction step.

To study the properties of an individual enzyme, the usual experimental
procedure is to purify the enzyme and study it in vitro. Once purified and
isolated, the environment of the enzyme can be controlled and in principle
the concentrations of all the participating molecules manipulated at will.
Individual substrates, effectors etc., can be selectively changed and any
change in rate recorded. In this manner, the response of the reaction rate
to changes in factors that might affect the reaction rate can be studied. It
is important that only one factor at a time is manipulated so that relative
effectiveness of each can be assessed.

Consider an experiment where we wish to investigate the response of the
rate of reaction to changes in substrate concentration. For notational con-
venience let us denote the concentration of substrate by the symbol Sj and
the rate of reaction by vi . The experiment would proceed in two steps. The
first step would involve measuring the rate of reaction, vi , at some substrate
concentration of interest, say Sj . In the second part of the experiment the
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concentration of substrate would be increased by an amount given by ıSj ,
and the experiment repeated at the new concentration of Sj C ıSj . The
increase in Sj is likely to cause a change in the rate of reaction from vi to
vinew . The difference between the two rates, vinew � vi is the change in
rate as a result of the change, ıSj and we can denote this change in rate
by ıvi . Depending on the particular enzyme, the effectors, the substrates
and products, the change we observe in the rate might be large or small. In
order to judge the relative effectiveness of any particular modifier we can
form the ratio

ıvi

ıSj
:

This will give us the change in vi per unit change in Sj . By measuring this
ratio for each factor that might affect the rate we can gauge which ones
have more of an effect or less of an effect.

There are however, two problems with this ratio. The first is that its value
depends on the size of the change we make to Sj , this is particularly true
if the response of vi to changes in Sj is non-linear (as most enzyme rate
responses are). The second problem is that the ratio depends on the units
we choose to measure the rate and concentration. A possible solution to
the later problem would be for all experimenters to employ a standard set
of units but this would be almost impossible to achieve in practice. A
much easier way around this problem is to eliminate the units altogether
by scaling the ratio with the rate and concentration. We can eliminate the
concentration units by dividing the change, ıSj , by the concentration of
Sj , i.e. ıSj =Sj . Likewise we can eliminate the reaction units by dividing
by vi . Therefore, rather than measure ıvi=ıSj it would be more sensible
to measure:

ıvi

ıSj

Sj

vi
:

This still leaves us with the first problem which is that the value of the
ratio varies with the amount of change we make to Sj . We could all decide
on a standard change to make in Sj , say doubling Sj and measuring the
change in vi . There is however a much more elegant and ultimately more
profitable approach to standardizing the change in Sj .

Assume that the substrate concentration has been set to a value Sb . At this
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concentration, the enzyme will show a reaction rate of vb . If we make a
change ıS1 to Sb , then this will cause a change in rate ıv1. The ratio,
ıv1=ıS1 is the slope of the line. If we now make the change in S smaller,
say ıS2, the ratio will be slighly different because the response is non-
linear. If we were to continue making ıS smaller and smaller, the slope
given by ıv=ıS would slowly approach a limiting slope. This line is the
tangent to the curve at the point Sb . Those familiar with the calculus will
recognize that in reducing ıS to a smaller and smaller increment, the ratio,
ıv=ıS , has reached a limiting value called the derivative:

ıv

ıS
�!

dv

dS
: (5.1)

as ıS!0

The ratio, ıv=ıS tends to the differential dv=dS as ıS tends to zero. The
differential has a precise meaning, it is the slope of the curve at the point S
and significantly for us, it has a unique value at this point.

As before, we can scale dv=dS to eliminate the measuring units so that
we end up with

dv

dS

S

v
:

This expression represents the scaled slope of the response curve at S , and
is called the elasticity coefficient of the rate of reaction v with respect to
the concentration of metabolite S . It measures how responsive a reaction
rate is to changes in the concentration of a modifier, in this case the con-
centration of substrate, S . We could have changed the concentration of the
product, P , or the concentration of an effector. In either case we would
be able to measure an elasticity. This means there will be as many elas-
ticity coefficients for a particular enzyme as there are modifiers that might
affect its reaction rate. Thus, not only will an enzyme be characterized
by a substrate elasticity but also by a product elasticity and any effector
elasticities. In addition, other factors which might affect the reaction rate,
such as pH, ionic strength and so on, will also have associated elasticity
coefficients. Any particular enzyme will thus be fully characterized when
all its elasticities have been measured or computed.



5.2. ELASTICITY COEFFICIENTS 131

As will be more fully explained in later sections the value of a particu-
lar elasticity depends on the concentrations of all the modifiers that the
enzyme may interact with. This behavior may not be too obvious at this
point but is crucial to a proper understanding of elasticities. In practice
it means that if an enzyme is purified with the intention of measuring its
elasticities then the concentrations of the substrates and products, the pH,
ionic strength and so on should be faithfully recreated in order to mimic
the in vivo conditions. If this is not done, then the measured values for
the elasticities will not reflect the elasticities in vivo and their usefulness
will be lost. As will be revealed in the next chapter, the elasticities are the
building blocks with which we can begin to understand the properties of
intact pathways.

5.2 Elasticity Coefficients

The elasticity coefficient is defined by the following expression:

"vSi
D

�
@v

@Si

Si

v

�
Sj ;Sk ;:::

D
@ ln v
@ lnSi

� v%=Si% (5.2)

The symbol for an elasticity is the Greek epsilon, ". It measures how re-
sponsive a reaction rate is to changes in the concentration of a modifier, in
this case the concentration of modifier Si . Any modifier can be changed
to see how they affect the reaction rate, we could have changed the con-
centration of the product, effector or anything else that might affect the
reaction rate. This means there will be as many elasticity coefficients for a
particular reaction step as there are modifiers that might affect it. Thus, not
only will a reaction step be characterized by a substrate elasticity but also
by a product elasticity, any effector elasticities, the enzyme concentration,
the pH, ionic strength and any other elasticity coefficients. Any particular
enzymic step will thus be fully characterized when all its elasticities have
been measured or computed.

When writing down the elasticity symbol, ", a subscript is often used to
indicate the modulating factor (S ), and a superscript to indicate the effect
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that is being measured (v). Those familiar with quantitative economics
will have come across a similar concept. The subscripts, Sj ; Sk; : : : in the
definition (5.2) indicate that any species or factor that could also influence
the reaction rate must be held constant at their current value when species
Si is changed. This is also implied in the use of the partial derivative
symbol, @, rather than the derivative symbol, d . In normal usage, these
subscripts are often left out as the partial derivative symbol is usually suf-
ficient to indicate what is meant. Given that the elasticity is defined in
terms of a derivative it is possible to computed an elasticity for a give rate
law by differentiation (See Example 5.1).

The elasticity is closely related to the kinetic order, sometimes called the
reaction order. For simple mass-action chemical kinetics, the kinetic order
is the power to which a species is raised in the kinetic rate law. Reac-
tions with zero-order, first-order and second-order are commonly found in
chemistry, and in each case the kinetic order is zero, one and two, respec-
tively. For a reaction such as:

2H2 CO2 ! 2H2 O

where the irreversible mass-action rate law is given by:

v D k H 2
2 �O2

the kinetic order with respect to hydrogen is two and oxygen one. In this
case the kinetic order also corresponds to the stoichiometric amount of
each molecule although this may not always be true.

Example 5.1 shows the elasticities for zero, first, second, and nth order
reactions. From the example we see that the elasticity reduces to the ex-
pected kinetic order for simple mass-action kinetics.

From the definition it is apparent that elasticities are dimensionless quanti-
ties. In biochemical systems theory, elasticities are also called the appar-
ent kinetic order.

Example 5.1

Determine the elasticities for the following mass-action rate laws:
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1. v D k

Elasticity: "vA D
@v

@A

A

v
D 0

2. v D kA

Elasticity: "vA D
@v

@A

A

v
D
A k

kA
D 1

3. v D kA2

Elasticity: "vA D
@v

@A

A

v
D
2kAA

kA2
D 2

4. v D kAn

Elasticity: "vA D
@v

@A

A

v
D
nkAn�1A

kAn
D n

Operational Interpretation

The definition of the elasticity (5.2) also gives us a useful operational in-
terpretation.

Operational Definition: The elasticity is the fractional change in reac-
tion rate in response to a fractional change in a given reactant or product
while keeping all other reactants and products constant.

That is, the elasticity measures how responsive a reaction is to changes in
its immediate environment. Since the elasticity is expressed in terms of
fractional changes, it is also possible to get an approximate value for the
elasticity by considering percentage changes. For example, if we increase
the substrate concentration of a particular reaction by 2% and the reaction
rate increases by 1:5%, then the elasticity is given by 1:5=2 D 0:75. The
elasticity is however only strictly defined (See equation (5.2)) for infinites-
imal changes and not finite percentage changes. So long as the changes are
small, the finite approximation is a good estimate for the true elasticity.

For a given reaction, there will be as many elasticity coefficients as there
are reactants, products and other effectors of the reaction. For species that
cause reaction rates to increase, the elasticity is positive, while for species
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that cause the reaction rate to decrease, the elasticity is negative. There-
fore, reactants generally have positive elasticities and products generally
have negative elasticities (Figure 5.2).

Example 5.2

How many elasticities are there for the following mass-action reactions:

a) A! B

There are two elasticities, "vA which will be positive and "vB which will be negative.

b) 2AC B ! 3C

There are three elasticities, "vA which will be positive, "vB which will also be posi-
tive and "vC which will be negative.

There are different ways to calculate an elasticity including numerical, al-
gebraic, and experimental. The numerical and algebraic methods rely on
knowing the reaction rate law. We saw in example (5.1) how elasticities
were computed algebraically. Numerically the elasticity can by estimated
by making a small change (say 5%) to the chosen reactant concentration
and measuring the change in the reaction rate. For example, assume that
the reference reaction rate is vo, and the reference reactant concentration,
So. If we increase the reactant concentration by �So and observe the new
reaction rate at v1, then the elasticity can be estimated by using Newton’s
difference quotient:

"vS '
v1 � vo

�So

So

vo
D
v1 � vo

vo

�
S1 � So

So

Newton’s quotient method relies on making one perturbation to So. A
much better estimate for the elasticity can be obtained by doing two sep-
arate perturbations in So. One perturbation to increase So and another to
decrease So. In each case the new reaction rate is recorded; this is called
the three-point estimation method. For example if v1 is the reaction rate
when we increase So, and v2 is the reaction rate when we decrease So, then
we can use the following three-point formula to estimate the elasticity:

"vS '
1

2

v1 � v2

S1 � So

�
So

vo

�
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Example 5.3

Estimate the elasticity using Newton’s difference quotient and the three-point es-
timation method. Compare the results with the exact value derived algebraically:

Let v D S=.0:5C S/. Assume S is 0.6.

a) Algebraic Evaluation
Differentiation and scaling the rate law gives the elasticity as 0:5=.0:5C S/. At a
value of 0.6 for S , the exact value for the elasticity is: 0.4546

b) Difference Quotient
Let us use a step size of 5%. Therefore h D 0:05 � 0:6 D 0:03 from which
S1 D 0:63. So D 0:6. From these values we can compute v1 and vo. vo D
0:6=.0:5C 0:6/ D 0:5454, v1 D 0:63=.0:5C 0:63/ D 0:5575. From these values
the estimated elasticity is given by: "vS D ..0:5575� 0:5454/=0:5454/ = ..0:63�
0:6/=0:6/ D 0:443

Compared to the exact value the error is 0.0116, or 2.55 % error
c) Three-Point Estimation
In addition to calculating v1 in the last example, we must also compute v2. To
do this we subtract h from So to give v2 D 0:533. The Three-Point estimation
formula gives us: "vS D 0:5

0:5575�0:5327
0:03

0:6
0:5454

D 0:4549

Compared to the exact value the error is only 0.0033, or 0.7 % error, a significant
improvement over the difference quotient method.

The degree of error in the difference quotient method will depend on the value of
S , which in turn determines the degree of curvature (or nonlinearity) at the chosen
point. The more curvature there is the more inaccurate the estimate. The value
in this example was chosen where the curvature is high, therefore the error was
larger.

In the examples shown in (5.1) the elasticities were constant values. How-
ever for more complex rate law expressions this need not be the case (See
Example (5.4)) and the elasticity will change in response to changes in
the reactant and product concentrations. Consequently when measuring
the elasticity numerically or experimentally one has to choose a particular
operating point.

Example 5.4

Determine the elasticities for the following rate laws:
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Figure 5.1 A. The slope of the reaction rate versus the reactant concen-
tration scaled by both the reactant concentration and reaction rate yields
the elasticity, "vS . B. If the log of the reaction rate and log of the reactant
concentration are plotted, the elasticity can be read directly from the slope
of the curve. Curves are generated by assuming v D S=.2C S/.
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The examples illustrate that for more complex rate laws, the elasticity becomes a
function of the reactant concentrations.
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Experimentally, we can measure an elasticity using the following exper-
iment. Consider a simple reaction such as A ! B and let us measure
the elasticity of reaction A. We must first select an operating point for A
and B . This choice will depend on the system under study. For example,
perhaps we are interested in the value of the substrate elasticity for an en-
zyme catalyzed reaction when the substrate and product concentration are
at their Km levels. Once the operating point has been chosen, the reaction
is started and the rate of reaction is measured. It is important that during the
measurement only a small amount of substrate is consumed and product
produced. We now begin the experiment again but this time the substrate
concentration is increased by a small amount and the product concentra-
tion is reset to its value in the first experiment. The reaction is started and
the new reaction rate measured. The fractional change in reaction rate and
substrate is recorded and the ratio computed to give the substrate elastic-
ity. In principle the same kind of experiment could be performed on the
product, this time keeping the substrate concentration constant.

Simple protocol for estimating the substrate elasticity

1. Set substrate and product concentrations to their operating points.

2. Record the reaction rate at the operating point.

3. Restore all concentrations to their original starting points.

4. Increase the concentration of substrate by a small amount.

5. Record the new reaction rate.

6. Compute the elasticity by dividing the fractional change in reaction
rate by the fractional change in substrate concentration.

7. At all times, maintain other substrate, product and effector concen-
trations at the operating point.

The algebraic definition of the elasticity automatically suggests ways to
estimate their values. Here we have seen a number of methods, including
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Figure 5.2 A. Reaction rate versus reactant. Increases in the reactant
cause an increase in the rate. A positive slope yields a positive elasticity.
B. Reaction rate versus product (assuming a positive rate from reactant
to product). Increases in product result in a decrease in reaction rate; a
negative slope yields a negative elasticity. Curves generated by assuming
v D S=.2C S/ and 2=.1C .0:1C 0:2P //, respectively.

algebraic differentiation of the rate law (if the rate laws is available), plot-
ting kinetic data on a log/log plot, and numerical computation of values by
simulation. Both the algebraic differentiation and the numerical simulation
require some kind of qualitative model. The log/log plot can in principle
be used to empirically determine an elasticity from a an enzyme kinetics
experiment. For example, the following table

Log Form

The definition of the elasticity in equation (5.2) shows the elasticity ex-
pressed using a log notation:

"vS D
@ ln v
@ lnS

This notation is frequently used in the literature. The right panel of Fig-
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Figure 5.3 A. Left Side: Plot of reaction rate versus substrate concentra-
tion. Measurements include errors. Right Side: Same data but plotted in
log space. The elasticity can be read directly from the slope of the curve.
Curves are generated by assuming v D 2S=.4C S/.

ure 5.3 shows one application of this notation, namely that a log-log plot
of reaction rate versus reactant concentration yields a curve where the elas-
ticity can be read directly from the slope. The origin of this notation will
be explained here.

If we examine the growth pattern of a micro-organism, we will often find
that it follows a pattern of the kind, y D ax . What this means is that the
number of microorganisms increases by a fixed proportion per unit time.
Often such data is plotted on a semi-logarithmic scale rather than the usual
linear scale as it helps to emphasize the fact that the relative growth under
these conditions is the same throughout the growth phase. To explain this
statement, a numerical example will be useful. Of the two sequences of
numbers

100, 150, 200, 250, 300, . . .
100, 150, 225, 337.5, 506.25, . . .

the first shows a regular increase of 50 units and the second a regular in-
crease of 50 per cent. from one number to the next. On a linear scale, the
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points representing the first sequence appear as equal distances from each
other and those representing the second sequence at increasing distances
along the axis. If instead, we take the logarithms of these numbers as in
the following sequence:

2, 2.176, 2.301, 2.398, 2.477, . . .
2, 2.176, 2.352, 2.528, 2.704, . . .

then on the logarithmic scale, it is the second sequence that gives points
at equal distances from each other while the first sequence shows points at
decreasing distances along the axis. It would seem, therefore, that equal
distances between points on a linear scale indicate equal absolute changes
in the variable and equal distances between points on a logarithmic scale
indicate equal proportional changes in the variable. Before taking the log-
arithm, the second sequence increased by 50% each time, in log form how-
ever, it increased by a constant absolute amount of 1.176.

More formally we can describe this effect as follows. Consider a variable
y to be some function f .x/, that is y D f .x/. If x increases from x to
.xCh/ then the change in the value of y will be given by f .xCh/�f .x/.
The proportional change however, is given by:

f .x C h/ � f .x/

f .x/

The rate of proportional change at the point x is given by the above
expression divided by the step change in the x value, namely h:

Rate of proportional change =

lim
h!0

f .x C h/ � f .x/

hf .x/
D

1

f .x/
lim
h!0

f .x C h/ � f .x/

h
D
1

y

dy

dx

From calculus we know that d lny=dx D 1=ydy=dx, therefore the rate of
proportional change equals:

d lny
dx

and serves as a measure of the rate of proportional change of the function
y. Just as dy=dx measures the gradient of the curve, y D f .x/ plotted
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on a linear scale, d lny=dx measures the slope of the curve when plotted
on a semi-logarithmic scale, that is the rate of proportional change. For
example, a value of 0.05 means that the curve increases at 5% per unit x.

We can apply the same argument to the case when we plot a function on
both x and y logarithmic scales. In such a case, the following result is true:

d lny
d ln x

D
x

y

dy

dx

This shows use the relationship between the log form and non-log form
of the elasticity. In approximate terms, we can say that if we make a x %
change in the concentration of a molecular species then the elasticity tells
us the percentage change, v %, in the reaction rate. For this reason one will
sometimes find the elasticity expressed as a ratio of percentage changes:

"vSi
�

% change in v
% change in Si

(5.3)

For example, if the concentration of a substrate is increased from 1.5 mM
to 1.95 mM then the percentage increase in substrate concentration is 30
%. If at the same time, the reaction rate of the enzyme increases from 55
�Mg�1min�1 to 12 �Mg�1min�1, then the percentage increase in rate
must be 24 %. Therefore the elasticity can be estimated approximately
from the ratio 24/30, which is equal to 0.8; that is, the enzyme rate changes
almost in proportion to a change in substrate. If the enzyme were acting
in vivo and a disturbance upstream caused the concentration of substrate
to rise then this enzyme would respond by increasing its rate almost in
proportion to the change in substrate concentration.

5.3 Mass-action Kinetics

Computing the elasticities for mass-action kinetics is straight forward. For
a reaction such as v D kS , we showed earlier (5.1) that "vS D 1. For a
generalized irreversible mass-action law such as:

v D k
Y

S
ni

i
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the elasticity for species Si is ni . For simple mass-action kinetic reactions,
the kinetic order and elasticity are therefore identical and independent of
species concentration.

For a simple irreversible mass-action reaction rate law such as:

v D k1S � k2P (5.4)

The elasticities for the substrate and product are given by:

"vS D
k1S

k1S � k2P
D
vf

v
(5.5)

"vP D �
k2P

k1S � k2P
D �

vr

v
(5.6)

In the above equations vf is the forward rate, vr is the reverse rate, and v
is the net rate. Note that "vS is positive and "vP negative. In general, the
elasticity for an effector that results in an increase in reaction rate will be
positive and conversely if the effector results in a decrease in the reaction
rate.

If we divide top and bottom by k1 and S in equation (5.5), and k2 and
P in equation (5.6), and noting that the ratio k1=k2 D Keq (See equa-
tion (A.2)), P=S D � and �=Keq D � we can express the elasticities in
the form:

"vS D
1

1 � �=Keq
D

1

1 � �

"vP D �
�=Keq

1 � �=Keq
D �

�

1 � �

(5.7)

These expressions can vary over a wide range of values. Far from equilib-
rium (� ' 0) "vS will lie close to 1:0, while "vP will be close to�0:0. When
operating close to equilibrium however (� � 1), the same elasticities will
tend toC1 and�1, respectively. This behavior is depicted in Figure 5.4.
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Of interest is the following relation (See equation (A.5)):

"vP
"vS
D
vr

vf
D ��

which connects the ratio of the elasticities to the disequilibrium ratio. It
also follows from the above equations that the sum of the elasticities for
mass-action kinetic rate laws is always one:

"vS C "
v
P D 1 (5.8)

This means that if one of the elasticities is known, the other can be easily
determined by subtraction.

0 0:5 1 1:5 2
�20

�10
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Net rate positive Net rate negative

Disequilibrium Ratio, �

E
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st
ic

ity

Substrate
Product

Figure 5.4 Elasticities as a function of the disequilibrium ratio, �.

Equation (5.8) is significant for another reason. The absolute magnitude of
"vS will always be larger than the absolute value for "vP when dealing with
mass-action kinetics. That is:
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� "vS D 1=.1 � �/ "vP D ��=.1 � �/

0.9 10 -9
0.5 2 -1
0.2 1.2 -0.25
0.1 1.111 -0.111

Table 5.1 Selected values for the elasticities and the disequilibrium ratio,
�: k"vSk > k"

v
P k

k"vSk > k"
v
P k

For small elasticity values the relative difference between the elasticities
can be significant. This means that changes in substrate concentrations
will have a much greater effect on the reaction velocity than changes in
product concentrations. As will be discussed more fully in a separate vol-
ume, ‘Control Theory for Bioengineers’, the propagation of signals along a
pathway is determined by the elasticity values. Given that substrate elas-
ticities are larger than product elasticities, signal propagation tends to am-
plify when traveling downstream compared to signals traveling upstream
which tend to be attenuated. For the general reversible mass-action rate
law:

v D k1
Y

S
ni

i � k2
Y

P
mi

i (5.9)
The

elasticities can be shown to equal:

"vSi
D

ni

1 � �

"vPi
D �

mi�

1 � �

(5.10)
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5.4 Local Equations

The elasticity coefficient is of central importance to metabolic control anal-
ysis. Just as the Michaelian constants are essential to describing the rate of
a enzyme-catalysed reaction, so the elasticities are essential to describing
the behavior of whole pathways. Before we can discuss in any great detail
how this is achieved, since that is the topic of the next chapter, some direct
uses of the elasticities will be given here.

It will be recalled that the elasticity coefficient is given by

"vS D
@v

@S

S

v

This definition can be rearranged and an approximate equation written in
the form

ıv

v
� "vS

ıS

S

This relation is approximate because the changes considered are finite, and
the definition of an elasticity applies strictly to infinitesimal changes. The
equation describes how, given a fractional change in some effector S, the
resulting fractional change in rate can be computed. For example, if the
elasticity of a enzyme reaction towards an effector S is 0.8, then given a
fractional change in S of 0.05 (a 5% change in S), the fractional change in
rate is given by

0:8 � 0:05 D 0:04

in others words, a 5% change in S leads to a 4% change in reaction rate.
But what of the following situation:

The diagram (Figure 5.5) shows a fragment from a larger pathway. The
central reaction step has three effectors which could potentially affect its
rate v, these are S , P and an inhibitor, I . Let us consider a disturbance1

somewhere in the pathway but not originating at the reaction step under
consideration. This disturbance will ultimately cause changes in each of

1This could be one of a number of causes, a change in enzyme expression, nutrient supply
change, hormonal change etc.



146 CHAPTER 5. ELASTICITIES

I

v1 v3
S P

v2

Figure 5.5 Species I inhibits reaction v2 in addition to potential affects
from S and P .

the effectors by amounts ıS , ıP and ıI . These changes will also be ac-
companied by a change to the reaction rate by an amount, ıv. There are
two immediate questions we can ask, what is the relationship between the
change in the effectors and the change in rate and what is the contribution
that each change in effector makes to the final change in rate?

The answers to these questions are straight-forward to obtain. Provided
that the changes are small, then the fractional change in rate, ıv=v is de-
fined by the sum of the individual contributions:

ıv

v
� "vS

ıS

S
C "vP

ıP

P
C "vI

ıI

I

For example, let us assume the following values for the elasticities, "vS D
0:4; "vP D �0:5; "vI D �0:2, and assuming the following changes in
effectors, ıS=S D 0:05; ıP=P D 0:03; ıI=I D 0:01, then the fractional
change in rate through the step is given by:

ıv

v
� 0:4 � 0:05C .�0:5/ � 0:03C .�0:2/ � 0:01 D 0:003

The rate has only changed by 0.3 %, much of the potential increase that
could have been obtained by the change in S has been reduced by the
strong product inhibition. To answer the question, what contribution does
each effector make to the final change in rate is given simply by examining
the individual changes. Thus out of the total absolute change in rate, the
change brought about by S contributed 54 % while the change in product
and inhibitor contributed -41 and -5 % respectively. Clearly the change in
inhibitor was not an important factor.
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In general, for a reaction step embedded in a pathway and acted upon by
m modifiers, the change in rate due to changes in all modifiers is given by
the relation

dv

v
D

mX
jD1

"vSj

dSj

Sj

where the symbol,
P

means ‘sum of’. In the equation, the small, but finite
changes have been replaced by differentials so that the relation is exact. If
the concentration of enzyme is also changed then we may also add the
enzyme elasticity to the sum, as in:

dv

v
D

mX
jD1

"vSj

dSj

Sj
C "vE

dE

E

These relations are probably the most important mathematical relations
used in MCA and we will come across their application in subsequent
chapters. They are a modification of standard total derivative relation. This
states that if y is some function f of m variables, xi ,

y D f .x1; x2; : : : ; xm/;

then the total derivative of y is given according to the definition:

dy D
@y

@x1
dx1 C

@y

@x2
dx2 C : : :C

@y

@xm
dxm

5.5 General Elasticity Rules

Just as there are rules for differential calculus, there are similar rules for
computing elasticities. These rules can be used to simplify the derivation
of elasticities for complex rate law expressions. Table 5.2 shows some
common elasticity rules, where a designates a constant and x the variable.
For example the first rule says that the elasticity of a constant is zero.
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1. ".a/ D 0

2. ".x/ D 1

3. ".f .x/˙ g.x// D ".f .x// f .x/
f .x/Cg.x/

˙ ".g.x// g.x/
f .x/Cg.x/

4. ".xa/ D a

5. ".f .x/a/ D a".f .x//

6. ".f .x/ g.x// D ".f .x//C ".g.x//

7. ".f .x/=g.x// D ".f .x// � ".g.x//

Table 5.2 Transformation rules for determining the elasticity of a function,
a D constant, x D variable.

We can illustrate the use of these rules with a simple example. Consider
the reversible mass-action rate law (5.4):

v D k1 S � k2 P

To determine the elasticity we first apply rule 3 to give:

"vS D "S .k1 S/
k1 S

k1 S � k2 P
� "S .k2 P /

�k2 P

k1 S � k2 P

where "S .f / means the elasticity of expression f with respect to variable
S .

Now transform the elasticity terms by applying additional rules. Let us
apply rule 6 to the expression "S .k1 S/ to give:

"S .k1 S/ D "S .k1/C "S .S/

We can now apply rule 1 to the first term on the right and rule 2 to the
second term on the right to give:

"S .k1 S/ D 0C 1

Since we’re evaluating the elasticity of S , P in this situation is a constant,
therefore:

"S .k2 P / D "S .k2/C "S .P / D 0C 0
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Combining these results yields:

"vS D
k1 S

k1 S � k2 P

which corresponds to the first equation in (5.5).

Now consider a simple enzyme kinetic rate equation. One of the most
famous is the Michaelis-Menten equation:

v D
Vm S

Km C S

where Vm is the maximal velocity and Mm the substrate concentration at
half maximal velocity.

The elasticity for this equation can be derived by first using the quotient
rule (rule 7) which gives:

"vS D ".Vm S/ � ".Km C S/

The rules can now be applied to each of the sub-elasticity terms. For ex-
ample we can apply rule 6 to the first term, ".Vm S/, and rule 3 to the
second term, ".Km C S/, to yield:

"vS D .".Vm/ C ".S// �

�
".Km/

Km

Km C S
C ".S/

S

Km C S

�
Applying rules 1 and 2 allows us to simplify (".Vm/ D 0I ".Km/ D
0I ".S/ D 1) the equation to:

"vS D 1 �

�
S

Km C S

�
or

"vS D
Km

Km C S

Example 5.5

Determine the elasticity expression for the rate laws using log-log rules:
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1. v D k.AC 1/
Begin with the product rule 6:

"vA D ".k/C ".AC 1/ D ".AC 1/

Next use the summation rule 3 and rule 2:

"vA D ".AC 1/ D ".A/
A

AC 1
C ".1/

1

AC 1

D
A

AC 1
C 0 D

A

AC 1

2. v D k=.AC 1/
Begin with the quotient rule 6 followed by Rule 3 and 2:

"vA D ".k/ � ".AC 1/ D �
1

AC 1

D �
A

AC 1

3. v D A.AC 1/
Begin with the quotient rule 6:

"vA D ".A/C "AC 1

Next use Rule 2, 3 and 2:

"vA D 1C
1

AC1

To make matters even simpler we can define the elasticity rules using an al-
gebraic manipulation tool such as Mathematica (http://www.wolfram.
com/) to automatically derive the elasticities [89]. To do this we must first
enter the rules in Table 5.2 into Mathematica. The script shown in Fig-
ure 5.6 shows the same rules (with a few additional ones) in Mathematica
format.

The notation f[x_,y_] := g() means define a function that takes two
arguments, x_ and y_. The underscore character in the argument terms is
essential. Note also the symbol ‘:’ in the assignment operator.

http://www.wolfram.com/
http://www.wolfram.com/
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(* Define elasticity evaluation rules *)

el[x_, x_] := 1

el[k_, x_] := 0

el[Log[u_,x_] := el[Log[u],x] = el[u,x]/Log[u]

el[Sin[u_],x_] := el[Sin[u],x] = u el[u,x]Cos[u]/Sin[u]

el[Cos[u_],x_] := el[Sin[u],x] = -u el[u,x]Sin[u]/Cos[u]

el[u_*v_,x_] := el[u*v,x] = el[u,x] + el[v,x]

el[u_/v_,x_] := el[u/v,x] = el[u,x] - el[v,x]

el[u_+v_,x_] := el[u+v,x] = el[u,x]u/(u+v) + el[v,x]v/(u+v)

el[u_-v_,x_] := el[u-v,x] = el[u,x]u/(u-v) - el[v,x]v/(u-v)

el[u_^v_,x_] := el[u^v,x] = v (el[u,x] + el[v,x] Log[u])

Figure 5.6 Elasticity rules expressed as a Mathematica script.

Typing el[k1 S - k2 P, S] into Mathematica will result in the output:

k1 S/(-k2 P + k1 S)

5.6 Summary

The elasticity coefficient is a measure of how sensitive the rate of a reaction
is to changes in its environment. The factors that are of usual interest in
MCA are the concentrations of modifiers, that is, the substrates, products
and effectors and the concentration of enzyme.

There will be as many elasticities as there are modifiers of the reaction. The
elasticity is strictly defined in terms of a partial derivative which means
that it measures the change in rate when one modifier is changed. For
example the substrate elasticity is measured when all other modifiers are
held constant except for the substrate concentration. Algebraically this
is achieved by partial differentiation and experimentally by clamping the
appropriate modifier concentrations.

The elasticity coefficient can be written in various equivalent forms each
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reflecting a different emphasis:

"vSj
D

�
@vi=vi

@Sj =Sj

�
Sk ;Sl ;:::

D
Sj

vi

�
@vi

@Sj

�
Sk ;Sl ;:::

D

�
@ ln vi
@ lnSj

�
Sk ;Sl ;:::

The first form is the ratio of fractional changes, the second form the scaled
slope on a linear plot, and the third form the slope of a log/log plot.

The notation, Sk; Sl : : : means that these modifiers are held constant dur-
ing the measurement of the partial derivative. An approximate form of the
elasticity is given by

"vS �
% change in v
% change in S

which can be used to estimate an elasticity is changes in reaction rate and
modifier are known. Elasticities have a number of important properties:

� The elasticity coefficient is not a constant but depends on the con-
centrations of all modifiers that might affect the rate of the reaction.
An elasticity is not like a Km or Ki ; the Michaelian constants are
characteristic for a particular enzyme and modifier, reflecting the en-
zymes’ kinetic mechanism and interaction energy with the modifier.
Kinetic constants do not in general depend on the concentrations of
the modifiers; elasticities do.

� In general, an elasticity is a function of both the kinetic characteris-
tics of an enzyme and the concentration of all the various modifiers
that might interact with the enzyme.

� For the standard irreversible Michaelian mechanism, the elasticity of
a substrate at saturating levels is zero and when the substrate is be-
low its Km, the elasticity is unity. When the substrate concentration
is equal to the Km, the elasticity has a value of 0.5.

Given a change in concentration of a modifier, it is possible to use the
value of the elasticity coefficient to predict approximately the change in
rate, thus

ıv

v
� "vS

ıS

S
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If more than one modifier is changing at a time, then the approximate
change in rate is given by the sum of the individual contributions:

ıv

v
�

X
j

"vSj

ıSj

Sj

It is very important to appreciate that the elasticities used in the above
equation must be measured at the prevailing state of the modifiers. It
makes no sense to use an elasticity that has previously been measured at a
substrate concentration of 2mM and then to use the same elasticity value
value at a substrate concentration of 20mM. The value of an elasticity is
dependent on the state of all modifiers.
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Exercises

1. What is the relevance of elasticity coefficients in understanding net-
work dynamics?

2. State the operational interpretation of an elasticity.

3. Why is the elasticity coefficient expressed in terms of a partial deriva-
tive? What does it mean in terms of an experimental operation?

www.sys-bio.org
www.sys-bio.org
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4. An experiment indicates that a given moleculeX has an elasticity of
-0.5 with respect to the rate of a reaction. State two key aspects that
this elasticity describes.

5. What is the elasticity with respect to the species A for the rate law
v D kA3?

6. Work out algebraically the elasticity for the rate law, v D k1�SCk2.
Describe its properties at high and low levels of S .

7. Derive the elasticity expression with respect to x for the following:

a) v D x2 C 1

b) v D x2 C x

c) v D x=.x2 C 1/

8. Describe one technique for numerically estimating an elasticity.

9. Given a change in ıv=v equal to 0.04, and that "vS D 0:1, what was
the change in ıS=S? If the concentration of S was 2.5mM, what
was the absolute change in S?

10. Given that the concentration of S is 3mM, and that the elasticity of
an enzyme with a rate law, VmaxS=.Km C S/ is 0.6, what is the
Km of the enzyme? What would be the elasticity at 8mM? Why
does the elasticity change?

11. What does the term �=Keq measure?

12. Describe the value of disequilibrium ratio as a reaction nears equi-
librium.

13. For a mass-action reversible reaction, describe what happens to the
substrate and product elasticities as the reaction approaches equilib-
rium.

14. Derive the two equations in (5.7).

15. Describe the significance of equation (5.8).
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16. Using the elasticity rules in Table 5.2, derive the elasticity for the
following equation indicating all intermediate steps.

v D Sn=.Km C S
n/



156 CHAPTER 5. ELASTICITIES



6
Introduction to Biochemical

Control

6.1 Control, Responses and Regulation

In the vernacular, the word control usually means the ability to influence,
command or to restrain a situation or process.1 In this chapter the term
control will be used to describe how much influence a given reaction step
in a network has on the system. To make matters simpler the system will
be considered at steady state so that control will refer to much influence
a given reaction step has on the steady state, that is how fluxes and con-
centrations are influenced. Most reaction steps in a cell are controlled by
proteins and the question then becomes how much influence a given pro-
tein has on the system’s steady state. Experimentally such control can
be measured by changing the concentration of an enzyme or changing its
activity via an inhibitor and measuring the effect on the steady state flux

1In engineering, control theory refers to the body of knowledge concerned with the design
and study of systems that can perform specific tasks or achieve a particular objective.

157
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and species concentrations. Concentrations of proteins can be changed in
various ways, for example by using irreversible inhibitors, changing the
promoter consensus sequence on the gene that codes for the protein or by
employing antisense RNA to reduce the expression level. Measurement
approaches will be described in more detail in the next chapter.

In the biological literature, the amount of control that a particular re-
action step has on a flux or species concentrations is called the control
coefficient.

In addition to investigating how individual reaction steps control the fluxes
and concentrations in a network, we are also interested in how external
factors influence the network. Examples of external factors will include
the level of nutrients, hormones, and of particular interest to human health,
therapeutic drugs. In these situations, rather than use the word control, we
will use the term response. Thus a biological cell will have a response to
a particular infusion of a drug. The degree of influence an external factor
has on a biological system will be described using response coefficients.

Finally, the degree to which an external factor or an enzyme has on a cel-
lular network will depend on the network’s regulatory mechanisms. The
degree of regulation at a given reaction step will be described using the
regulatory coefficient.

6.2 Control Coefficients

Control coefficients are used to describe how much influence (i.e. control)
a given reaction step has on the steady state flux or species concentration
level. It is common to measure this influence by changing the concentra-
tion of the enzyme that catalyzes the reaction. To describe control coeffi-
cients in more detail let us consider a thought experiment.

The following discussion will be centered on the simple linear pathway
shown in Figure 6.1. Let us walk through a thought experiment where we
will assume to begin with that the species pools, S1 to S4 in the pathway
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v5

X5

Figure 6.1 Five step linear pathway

are empty, and that Xo and X5 are fixed species forming the boundary.

To make matters simpler, we can also assume that the right-hand boundary
pool, X5 is set to zero. In order to have a net flux through the pathway, the
external metabolite, Xo must have a positive value, perhaps 1 mM. This is
the situation at time zero. Let us allow the pathway to evolve in time. The
first thing that happens is that the reaction catalyzed by the first enzyme
begins to convertXo into product S1. Since we assume thatXo is fixed, the
concentration of Xo is unaffected by this rate of consumption. However,
the product S1 is a floating species and as time goes on, its concentration
will rise. As the concentration of S1 increases, two things will happen,
first the second enzyme will begin to convert S1 into S2 and S1 will begin
to inhibit its own production rate by the first enzyme on account of product
inhibition. The first reaction will therefore begin to rise at a slower rate.

Since the second enzyme is now generating S2, S2 starts to increase. S2 in
turn it stimulates the third enzyme to begin making S3 but it also begins to
inhibit the second enzyme. And so on down the chain, all concentrations
begin to rise and all enzymes begin to operate by showing a positive rate.
The concentrations of the floating species and the reaction rates cannot
however go on rising forever. We have already seen that as the species
concentrations rise they begin to inhibit the enzymes that produce them.
The net effect of these many interactions is that the concentrations slowly
settle to a constant value such that the rates at which they are being made
is exactly balanced by the rates at which they are being consumed. The
rate of the first enzyme must balance the rate of the second enzyme, that
is v1 D v2, but the second and third rates will also be in balance, so that
v2 D v3. This must mean that the rate through the first enzyme must be
the same as the rate through the third enzyme, v1 D v3. In fact all rates of
flow across each enzyme will equal each other, that is

v1 D v2 D v3 D v4 D v5
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This state is the steady state, the concentrations of all the metabolites settle
to some values and no longer evolve in time, and the rate through each step
is the same.

The fact that the rate across each enzyme is the same also means that there
is a constant flow of material through the pathway, which we call the flux,
symbolized by J . At steady state there are no ‘slow’ rates or ‘fast’ rates,
they are all the same.

In a linear pathway, the rates of reaction are equal to each other at steady
state.

With the pathway at steady state we can now consider some additional
thought experiments such as the effect of perturbations on the steady state.
Let us change the concentration of one of the enzymes and see what hap-
pens to the steady state concentrations and the flux, J . Let’s try this by
doubling the concentration of enzyme, E2, that catalyzes the second step.
The immediate effect is to increase the rate, v2, through the step. This in
turn results in more S2 being produced and more S1 consumed, S2 will
therefore rise and S1 fall. The rise in S2 will cause a cascade of changes
down the pathway towards X5. The fall in S1 has a different effect. As-
suming that the first enzyme is product inhibited by S1, the fall in S1 will
cause a rise in the rate through v1. The net effect of all these changes
is that the net flux through the pathway will increase, all species concen-
tration downstream of v2 will increase and S1 will decrease. Figure 6.2
illustrates a simulation that shows the change in flux through E2 as the
pathway approaches steady state, followed by the effect of a perturbation
in E2 at t D 0:2.

We can get an idea of how effective the change in enzyme concentration
was by taking the ratio of the change in the species concentration or the
flux to the change we made in the enzyme concentration, that is we could
measure:

�J

�E2
;

�S1

�E2
; : : :

�S4

�E2

where � means ‘a change in’. However, because enzyme kinetic rate laws
are usually nonlinear, the degree of influence we measure will depend on
the size of the �E. Therefore instead of making large changes to the
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Figure 6.2 Effect of a perturbation in E2 at t D 0:2 on the flux through
the pathway, Figure 6.1. Note the initial transition to steady state between
t D 0 and t D 0:2. At t D 0:2 a change �E2 is made to E2 resulting in
a change �J in the steady state pathway flux/ Parameters are given in the
Jarnac Script: 6.2 at the end of the chapter.
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Figure 6.3 Effect of perturbing each enzyme by 20% in the linear pathway,
Figure 6.1. Note that each enzyme affects the system differently both in
the transient response and in the final steady state response. Parameters
given in Jarnac script: 6.3

enzyme concentration we should make small changes, for example:

ıJ

ıE2
;

ıS1

ıE2
; : : :

ıS4

ıE2

where ı means ‘a small change’. We can be more precise mathematically if
we make the changes infinitesimally small, our measurement of influence
then becomes:

dJ

dE2
;

dS1

dE2
; : : :

dS4

dE2

Finally, if we want to make the measurement useful to experimentalists we
can remove the units by scaling the derivatives, such that:

dJ

dE2

E2

J
;

dS1

dE2

E2

S1
; : : :

dS4

dE2

E2

S4

Obviously in an experiment we cannot make infinitesimals changes but
we can make changes sufficiently small (but still measurable) that we can
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approximate the derivatives. The scaled derivatives are called control co-
efficients and we will define both the flux and concentration control coef-
ficients as follows:

C JEi
D

dJ

dEi

Ei

J
D

d lnJ
d lnEi

� J%=Ei% (6.1)

C
Sj

Ei
D
dSj

dEi

Ei

Sj
D
d lnSj
d lnEi

� Sj%=Ei% (6.2)

Example 6.1

A given enzyme catalyzed reaction in a metabolic pathway has a flux control
coefficient equal to 0.2:

C JE D 0:2

What does this mean?

A flux control coefficient of 0.2 means that increasing the enzyme activity of the
step by 1% will increase the steady state flux through the pathway by 0.2%.

In the expression above, J is the flux through the pathway and Ei the
enzyme concentration of the i th step. Operationally, an individual CEi

is
measured by making a small change in Ei , waiting for the system to reach
a new steady state and than taking the ratio of the change. Before moving
on to another step, the level of Ei must be restored by to its original value.

From a practical standpoint we see that the control coefficients can also
be approximated by the ratio of percentage changes which is a useful
interpretation for measurement purposes. The other point to note is that
like elasticities we can express the control coefficients in log form (See
section 5.2).

The flux control coefficient measures the fractional change in flux brought
about by a given fractional change in enzyme concentration and the con-
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centration control coefficients measure the fractional change in species
concentration given a fractional change in enzyme concentration.

Control coefficients are useful because they tell us how much influence
each enzyme or protein has in a biochemical reaction network. For ex-
ample we could increase the copy number of a given gene to change the
concentration of the expressed protein and find out how much influence the
gene has on its own gene product and on other processes. These changes
might include the concentration of other gene products, production of an
important commodity metabolite or even the growth rate of the organism.
From an engineering perspective, knowing the degree to how processes are
influenced is very important. If is important to note however, that knowing
the values of the control coefficients does not tell us why certain enzymes
or proteins have more influence than others. To answer the ‘why’ question
we must consider the theorems associated with how control is distributed
and the relationship of the control coefficients to the elasticities of the net-
work.

6.3 Distribution of Control

Flux control coefficients are a useful measure to judge the degree to which
a particular step influences the steady state flux. Even more interesting is
that there are numerous relationships between the various coefficients.

Consider the simple two step pathway:

Xo
v1
�! S

v2
�! X1

There is a simple graphical technique we can use to study how the enzyme
concentrations, E1 and E2 control the steady state concentration S , and
the steady state flux, J through the pathway. In this system, the steady
state flux, J will be numerically equal to the reaction rates v1 and v2,

J D v1 D v2

It is important to recall that for many enzyme catalyzed reactions the rate,
v is proportional to the concentration of enzyme, E, v / E.
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Let us plot both reaction rates, v1 and v2 against the substrate concentra-
tion S , Figure 10.9.
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Figure 6.4 Plot of v1 and v2 versus the concentration of S for a simple
two step pathway. The intersection of the two curve marks the point when
v1 D v2, that is steady state. A perpendicular dropped from this point
gives the steady state concentration of S .

Note the response of v1 to changes in S . v1 falls as S increases due to
product inhibition by S . The intersection point of the two curves marks the
point when v1 D v2, that is the steady state. A line dropped perpendicular
from the intersection point marks the steady state concentration of S

Let us now increase the concentration of E2 by 30% by adding more en-
zyme (Figure 6.5). Because the reaction rate is proportional to E2, the
curve is scaled upwards although its general shape stays the same. Note
how the intersection point moves to the left, indicating that the steady state
concentration of S decreases relative to the reference state. This is un-
derstandable because with a higher v2, more S is consumed therefore S
decreases.

In the next experiment, let us restore E2 back to its original level and
instead increase the amount of E1 by 30% (Figure 6.6). Again, changing
E1 scales the v1 curve but because of the negative curvature, the v1 curve
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Figure 6.5 v2 has been increased by 30% (dotted line) by increasing the
enzyme concentration on v2. This results in a displacement of the steady
state curve to the left, leading to a decrease in the steady state concentration
of S .

shifts right. This moves the intersection point to the right, indicating that
the steady state concentration of S increases relative to the reference state.

Let us now change the activity of both E1 and E2 by 30% (Figure 6.7).
Note that the curves for v1 and v2 are both scaled upwards, this moves
the intersection point vertically upwards and therefore doesn’t change the
steady state concentration of S . This happens because both curves move
vertically by the same fraction so that the intersection point can only move
vertically.

This experiment highlights an important result, when all enzyme concen-
trations are increased by the same fraction, the flux increases by that same
fraction but the species or metabolite levels remain unchanged. We can
summarize this with the following statement:

If all Ei are increased by a factor ˛ then the steady state change in J and
Si is:
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Figure 6.6 v1 has been increased by 30% (dotted line) by increasing the
enzyme concentration on v1. This results in a displacement of the steady
state curve to the right, leading to an increase in the steady state concen-
tration of S .

ıJ D ˛ J and ıSj D 0

This is such an important result that it will be repeated again: increasing
the activities of both enzymes by the same fraction will increase the flux
through the pathway by the same fraction but will not change the concen-
tration of the pathway species, S .

If we had a pathway with n steps and increased every enzyme concentra-
tion by the some factor then we would observe the same thing, the species
concentrations would remain unchanged but the flux would increase. This
observation is in fact true no matter how complex the pathway topology
and doesn’t just apply to linear chains of reaction steps.

Another way to understand why J increases by ˛J is as follows. Since
ıS D 0, the only change that could possibly effect the flux is the change
in enzyme concentration, since the enzyme concentration has increased by
a given proportion (30%), the flux must also have increased by the same
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Figure 6.7 In this experiment, both E1 and E2 are increased by 30 %
(dotted lines). Because both rates are increased by the same amount, the
rate of change of S does not change. This means that there is no resulting
change to the steady state concentration of S . The net flux through the
pathway has however increased by 30 %.

proportion since the rate is proportional to the enzyme concentration (i.e
vi / Ei , hence J ! ˛J .

Example 6.2

In the following pathway, an increase in E2 by 20% results in a 5% increase in
the steady state flux, estimate the value of C JE2

�! S1
E2
��! S2 �! S3 �!

C JE2
is the ratio of the fractional change in flux divided by the fraction change

in the enzyme concentration, therefore an estimate for the control coefficient is
given by:

C JE2
D
0:05

0:2
D 0:25
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Prediction of Flux and Concentration Changes

We can also rearrange equations 6.1, 6.2 control coefficients into the fol-
lowing form:

dJ

J
D C JEi

dEi

Ei

dSj

Sj
D C

Sj

Ei

dEi

Ei

These simple relations allow us to compute the change in flux or concen-
tration given a change in enzyme concentration. These relations only hold
true if the changes in enzyme concentration are infinitesimal. For practical
purposes the relationships will approximately hold provided the changes
in Ei are small. Of more interest is if we make changes to multiple enzy-
matic steps, the overall change will be the sum of the individual changes.
The technical reason for this is that small changes in Ei mean that the re-
sponse is linear so that multiple responses can be summed to obtain the
total response. In general, if we make changes to n reaction steps, then the
overall change in flux and species concentrations is given by:

dJ

J
D

nX
iD1

C JEi

dEi

Ei
(6.3)

dS

S
D

nX
iD1

CSEi

dEi

Ei
(6.4)

Example 6.3

In the following pathway, the numbers refer to the flux control coefficients for the
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respective reaction steps:

�! S1
0:2
��!
E1

S2 �! S3
0:4
��!
E3

what is the percentage change in flux if we increase E1 by 10% and E3 by 20%?

To calculate this we use equation 6.3:

ıJ

J
D 0:1 0:2C 0:2 0:4 D 0:1 or 10%

Example 6.4

In the following pathway, the numbers refer to the flux control coefficients for the
respective reaction steps:

0:15
��!
E1

S1
0:4
��!
E2

S2
0:1
��!
E3

S3
0:3
��!
E4

S4
0:05
��!
E5

Given no other information, if you could increase enzyme concentrations by 20%
which two steps would you engineer to increase the flux the most?

Engineering the second and fourth enzymes will have the most effect on the steady
state flux since they have the highest flux control coefficients. If we increased the
second and fourth step by 20% the percentage change in flux will be:

ıJ

J
D 0:2 0:4C 0:2 0:3 D 0:14 or 14%

Summation Theorems

In this section we will introduce the concept of operational proofs. These
proofs rely on carrying out thought experiments on a system and then cast-
ing the experiments in algebraic form from which theorems can be derived.
Although perhaps not as rigorous as a purely algebraic approach, opera-
tional proofs offer insight in to the underlying biology and dynamics of
the system and are therefore very useful exercises.
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Consider the following two step pathway:

Xo
v1
�! S

v2
�! X1

whereXo andX1 are fixed. Let the pathway be at steady state and imagine
increasing the concentration of enzyme, E1 that catalyzes the first step by
an amount, ıE1. The effect of this is to increase the steady state levels
of S and flux, J . Let us now increase the level of E2 by ıE2 such that
the change in S is restored to the value it had in the original steady state.
The net effect is that ıS D 0. There are two ways to look at this thought
experiment, from the perspective of the system and from the perspective
of local changes. For the system we can compute the overall change in
flux or species concentration by adding the two control coefficient terms,
thus:

ıJ

J
D C JE1

ıE1

E1
C C JE2

ıE2

E2

ıS

S
D CSE1

ıE1

E1
C CSE2

ıE2

E2
D 0

(6.5)

We can also look at that is happening locally at every reaction step. Since
the thought experiment guarantees that ıS D 0 the local equations (See
section 5.4) are quite simple:

ıE1

E1
D
ıv1

v1

ıE2

E2
D
ıv2

v2

Because the pathway is linear, at steady state, v1 D v2 D J . We can
substitute these expressions into 6.5 therefore we can rewrite the system
equations as:

ıJ

J
D C JE1

ıv1

v1
C C JE2

ıv1

v1

ıS

S
D CSE1

ıv1

v1
C CSE2

ıv1

v1
D 0
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Since ıJ=J D ıv1=v1, we can rewrite the above equations as:

˛ D C JE1
˛ C C JE2

˛

0 D CSE1
˛ C CSE2

˛

where ˛ D ıJ=J . We then conclude that:

1 D C JE1
C C JE2

0 D CSE1
C CSE2

A number of assumptions were made in this derivation, these include the
fact that vi / Ei and that changes inEi has no effect on any other enzyme
concentration. The first assumption is called the linearity assumption and
the second the independence assumption. These assumptions can be re-
laxed if we describe the theorems using canonical control coefficients (See
section at end of chapter).

To illustrate a more complex example, consider a branched pathway (Fig-
ure 6.8):

S
v1

v2

v3

Figure 6.8 Simple Branched Pathway.

At steady state the following statement is true:

v1 D v2 C v3

As before let us make a positive perturbation, ıE1 in the reaction step v1.
This will cause the steady state level of S and all reactions rates down-
stream to increase. Unlike the simple linear chain, there are multiple ways
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to perturb E2 and E3 in order to restore S back to its original level in the
branched pathway. Instead we can impose the constraint that what ever
relative perturbation we make in v1 we will make the same relative pertur-
bation in v2. Given this constraint what is the relative perturbation in v3
that achieves, ıS D 0?

To answer this question we must be aware that to satisfy the steady state
condition the sum of the changes in ıv2 and ıv3 must equal the change
ıv1, that is:

ıv1 D ıv2 C ıv3

We now divide both sides by v1 and adjusting the denominators of v2 and
v3 to obtain:

ıv1

v1
D
ıv2

v2

v2

v1
C
ıv3

v3

v3

v1

Since we imposed the condition ıv1 D ıv2, we rewrite the above equation
as:

ıv1

v1
�
ıv1

v1

v2

v1
D
ıv3

v3

v3

v1

That is:
ıv1

v1

�
1 �

v2

v1

�
D
ıv3

v3

v3

v1

v2=v1 is the fraction of flux going down the upper branch, which we will
term, ˛. v3=v1 is the fraction of flux going down the lower arm, that is
1 � ˛, therefore:

ıv1

v1
.1 � ˛/ D

ıv3

v3
.1 � ˛/

ıv1

v1
D
ıv3

v3

This simple analysis shows that one way to achieve ıS D 0 is for all
fractional changes in ıvi to be equal, that is ıv1=v1 D ıv2=v2 D ıv3=v3.
As before, because ıS D 0, it is also true that ıEi=Ei D ıvi=vi so that
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(we assume that vi � Ei ):

ıJ

J
D C JE1

ıv1

v1
C C JE2

ıv1

v1
C C JE3

ıv1

v1

ıS

S
D CSE1

ıv1

v1
C CSE2

ıv1

v1
C CSE3

ıv1

v1
D 0

and therefore:

1 D C JE1
C C JE2

C C JE3

0 D CSE1
C CSE2

C CSE3

Equations 6.6 summarizes the two summation theorems.

nX
iD1

C JEi
D 1

nX
iD1

C
Sj

Ei
D 0

(6.6)

In both theorems, n is the number of reaction steps in the pathway. The
flux summation theorem suggests that there is a finite amount of ‘control’
in the system and that control is shared between all steps. In addition, it
states that if one step gains control then one or more other steps must lose
control.

A more sophisticated analysis involving the stoichiometry matrix, implicit
differentiation together with the application of linear algebra techniques
reveals that the summation theorems apply to networks of arbitrary com-
plexity. If the control coefficients are expressed in terms of changes in
enzyme concentrations then there is the implicit assumption that vi � Ei
and than changes in a particular Ei has no effect on other enzyme concen-
trations. Later on we will see that even these assumptions can be relaxed
by using an alternative definition for the control coefficient.
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Example

Consider the simple pathway shown in Figure 6.9. A simple mathematical
model for this pathway is given in the Jarnac script 6.1.

p = defn cell

   J1: $Xo -> S1;

       Vm1/Km1*(Xo - S1/Keq1)/(1 + Xo/Km1 + S1/Km2);

   J2:  S1 -> S2;

       Vm2/Km2*(S1 - S2/Keq2)/(1 + S1/Km3 + S2/Km4);

   J3:  S2 -> $X1;

       Vm3*S2/(Km5 + S2);

end;

p.Xo = 2;  p.X1 = 0;

p.Keq1 = 1.2; p.Keq2 = 2.5;

p.Vm1 = 3.4; p.Vm2 = 8.2; p.Vm3 = 2.3;

p.Km1 = 0.6; p.Km2 = 0.78;

p.Km3 = 0.9; p.Km4 = 1.2;

p.Km5 = 0.5;

p.S1 = 0; p.S2 = 0;

p.ss.eval;

println " C1 = ", p.cc (<p.J1>, p.Vm1),

        " C2 = ", p.cc (<p.J1>, p.Vm2),

        " C3 = ", p.cc (<p.J1>, p.Vm3);

Listing 6.1 Three step pathway model

Table 6.1 shows the values for the flux control coefficients. We can see that
flux control is distributed across all three reaction steps. Almost 50% of
control is located on the last step. This show it is possible that in a linear
pathway the committed step (i.e./ the firs step) is necessarily the step with
the most control. By varying the values of the various kinetic parameters
it is possible to obtain almost any pattern of control.
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Xo
v1

S1
v2

S2
v3

X1

Figure 6.9 Three step linear pathway

C JVm1
D 0:3677

C JVm2
D 0:1349

C JVm2
D 0:4989

Table 6.1 Flux Control Coefficients

To summarize:

1. Control is shared throughout a pathway, that is the degree to
which flux is limited in a pathway is shared. It is unlikely that
only a single step in pathway limits flux.

2. If one step gains control, one of more other steps must loose
control.

3. Control coefficients are system properties, they can only be
computed or measured in the intact system. Inspection of a
single enzymatic step will not reveal its degree of control (or
influence) on the pathway.

Rate-limiting Steps

In much of the literature and many contemporary textbooks, one will often
find a brief discussion of an idea called the rate-limiting step. In text books
we will find statements such as:
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“It is of course a truism to say that every metabolic pathway can and must
have only one rate-liming step”, Denton and Pogson, 1976.

“In order to exert control on the flux of metabolites through a metabolic
pathway, it is necessary to regulate its rate-limiting step” Voet and Voet
Biochemistry (p522), 3rd edition, 2004

These statements do not match the discussion given in the previous sec-
tions where control, or rate-limitingness was considered to be shared among
all steps and not confined to just one. Other than a few books such as the
4th edition of Lehninger Biochemistry, most textbooks will have similarly
expressed statements. The 4th edition of Lehninger states more correctly:

“Metabolic control analysis shows that control of the rate of metabolite
flux through a pathway is distributed among several of the enzyme in that
path”.

There are also a variety of related terms such as rate-determining, pace-
maker, bottleneck, master reaction or key enzyme. What is common is
that authors will argue that a metabolic pathway will contain a single step
that has overall influence over the pathways’ flux. One of the earliest refer-
ences to the concept of the rate-limiting step is a quote from Blackman [6]:

‘When a process is conditioned as to its rapidity by a number of separate
factors, the rate of the process is limited by the pace of the slowest factors.”

This sentence started a century long love-affair with the idea of the rate-
limiting step in biochemistry, a concept that has lasted to this very day.
From the 1930s to the 1950s there were however a number of published
papers which were highly critical of the concept, most notably Burton [12],
Morales [60] and Hearon [31] in particular. Unfortunately much of this
work did not find its way into the rapidly expanding fields of biochemistry
and molecular biology after the second world war and instead the intuitive
idea first pronounced by Blackman still remains today one of the corner
stones in understanding cellular regulation. The concept drives much of
metabolic engineering and drug targeting of metabolism. What is most sur-
prising however is that a simple quantitative analysis shows that it cannot
be true, and there is ample experimental evidence [32, 11] to support the
alternative notion, that of shared control. The concept of the rate-limiting
step is both inconsistent with logic and more importantly experimental ev-
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idence.

The confusion over the existence of rate-limiting steps stems from a failure
to realize that rates in cellular networks are governed by the law of mass-
action, that is, if a concentration changes, then so does its rate of reaction.
Some researchers try to draw analogies between cellular pathways and hu-
man experiences such as traffic congestion on roads or customer lines at
shopping store checkouts. In each of these analogies, the rate of traffic
and the rate of customer checkouts does not depend on how many cars are
in the traffic line or how many customers are waiting. Such situations do
warrant the use of the phrase rate-limiting step. Traffic congestion and the
customer line are rate-limiting because the only way to increase the flow
is to either widen the road or increase the number of cash tills, that is there
is a single factor that determines the rate of flow. In reaction networks
the flow is governed by many factors including substrate/product/effector
concentrations as well as the capacity of the reaction (Vmax). Unless a
reaction step is saturated (unlikely), it is possible to increase the flow by
increasing the reactant concentration or decreasing the product concentra-
tion. In biological pathways, rate-limiting steps are therefore the exception
rather than the rule. It is highly unlikely for a single reaction to be fully
rate limiting because it can be influenced by many factors. Many hundreds
of measurements of control coefficients have born out this prediction.

Most biochemistry and molecular biology literature interpret the rate-limiting
step to be the single step in a pathway which limits the flux. In terms of
our control coefficients we can interpret the rate-limiting step as the step
with a flux control coefficient of unity. This means, by the summation the-
orem, that all other steps (at least in a linear chain) must have flux control
coefficients of zero. However, when we consider branched and cyclic sys-
tems it is possible to have flux control coefficient much greater than one
(other control coefficient must then be negative to satisfy the summation
theorem). In these cases what adjective should we use, hyper-rate-limiting
steps? In the final analysis, it is better to try and assign a value to the rate-
limitingness of a particular step in a pathway rather than designate a given
reaction step as either a rate-limiting step or not.
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6.4 Connectivity Theorems

In the previous section, we saw that there are summation theorems relat-
ing the control coefficients. Here we will introduce an additional set of
theorems that relate the control coefficients to the substrate, product and
effector elasticities. There theorems are called the connectivity theorems
and represent the most important result in metabolic control analysis. The
theorem relates the control coefficients to the elasticities, that is it relates
system wide properties to local properties.

In the derivation of the summation theorems, certain operations were per-
formed on the pathway such that the flux changed value but the concentra-
tions of the species were unchanged, thus dJ=J ¤ 0 and dS=S D 0.

The constraints on the flux and concentration variables in the summation
theorems suggest a complementary set of operations. That is can we per-
form one or more operations to the enzymes such that the opposite is true,
dJ=J D 0 and dS=S ¤ 0. The short answer is such a set of operations
which preserve the flux but change the species concentrations leads to an-
other set of theorems, called the connectivity theorems.

Consider the following pathway fragment:

v1
�! S1

v2
�! S2

v3
�! S3

v4
�!

Let us make a change to the rate through v2 by increasing the concentration
of enzyme catalyzing E2. Let us assume we increase E2 by an amount,
ıE2. This will result in a change in the steady state of the pathway. The
concentration of S2, S3, and the flux through the pathway will rise and the
concentration of S1 will decrease because it is upstream of the disturbance.

The condition we now wish to impose is to make a second change to the
pathway such that we restore the flux back to what it was before we made
original change. Since the flux increased when we changed E2 we need to
decrease the flux and we can easily do this by decreasing one of the other
enzyme levels. If we decrease the concentration of E3 this will reduce the
flux. DecreasingE3 will also cause the concentration of S2 to increase fur-
ther. However, S1 and S3 will change in the opposite direction compared
to when E2 was increased.
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In fact when E3 is changed sufficiently so that the flux is restored to its
original value, the concentrations of S1 and S3 will also be restored to
their original values and it is only S2 that will be different. This is true be-
cause the flux through v1 is now the same as it was originally (since we’ve
restored the flux), and coupled to the fact that E1 has not been manipu-
lated in any way must mean that the concentrations of S1 and all species
upstream of S1 must be the same as they were before the modulations were
made. The same arguments apply to S3 and all species downstream of v4.

We have thus accomplished the following: E2 has been increased by ıE2,
this results in a change ıJ to the flux. We now decrease the concentration
of E3 such that the flux is restored to its original value. In the process, S2
has changed by ıS2 and neither S1 nor S3 have changed. In fact no other
species in the entire system has changed other than S2.

The ability to perform such a manipulation is general and even if a partic-
ular species had many rates coming in and many rates leaving we would
still be able to perform the necessary manipulations on all the adjacent en-
zymes such that only that species changed in concentration and the flux
was unaltered.

S

J (Flux)

2 S3 S4S1

S2 S 3 S4S1

a)

b)

E1 E2 E3 E4 E5

v1 v3 v4 v5v2

Figure 6.10 Connectivity Theorem: a) A change is made to E2, this
causes changes to species concentrations upstream and downstream in-
cluding a change in flux. b) Another change is made to E3 to oppose the
change in flux, this results in only three net changes, a change in E2, E3
and S2, no other changes occur.
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Flux Connectivity Theorem

Considering the thought experiment described in the last section we can
now write down two sets of equations which apply simultaneously to the
pathway, a local equation and a system equation. The system equation
will describe the effect of the enzyme changes on the flux. Since the net
change in flux is zero and the fact that we only changedE2 andE3, we can
write the change in the system flux using the following system equation:

ıJ

J
D 0 D C JE2

ıE2

E2
C C JE3

ıE3

E3

To determine the local equations we concentrate on what is happening at a
particular reaction step. For example, as a result of making changes to E2
and E3, the change in rate at v2 is given by

0 D
ıv2

v2
D
ıE2

E2
C "

v2

S2

ıS2

S2

and at v3

0 D
ıv3

v3
D
ıE3

E3
C "

v3

S2

ıS2

S2

Note that ıE2=E2 will not necessarily equal ıE3=E3. No other changes
took place so that these are the only local equations to consider. We can
rearrange the local equations so that:

0 D
ıE2

E2
D �"

v2

S2

ıS2

S2
(6.7)

0 D
ıE3

E3
D �"

v3

S2

ıS2

S2
(6.8)

We can now insert ıE2=E2 and ıE3=E3 from the local equations into the
system equations and obtain:

0 D
ıJ

J
D �

�
C JE2

"
v2

S2

ıS2

S2
C C JE3

"
v3

S2

ıS2

S2

�
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and therefore:

0 D
ıS2

S2

�
C JE2

"
v2

S2
C C JE3

"
v3

S2

�
Since we know that ıS2=S2 is not equal to zero it must be true that

0 D C JE2
"
v2

S2
C C JE3

"
v3

S2

This derivation can be applied to a species that interacts with any number
of steps. In general the number of the terms will equal the number of
interactions a species makes. For example, in the pathway fragment in
Figure 6.11.

v1

v3

S
v2

Figure 6.11 Pathway Fragment for Connectivity Theorem.

where S interacts with it production rate, v1, a consumption rate, v2, and
an inhibitory interaction with v3, the connectivity may be written as

C JE1
"
v1

S C C
J
E2
"
v2

S C C
J
E3
"
v3

S D 0

For a species, S that interacts with r other steps, the flux connectivity
theorem is written as:

0 D

rX
iD1

C JEi
"
vi

S

Concentration Connectivity Theorem

To derive the flux connectivity theorem we had to use the system equation
that was related to the flux. It is however possible to use a different set
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of systems equations, those with respect to the species concentrations. In
the case of the species there will be two distinct systems equations. One
of these will describe the effect that our modulation has on the common
species (S2 in the example), and a second describing the effect on any other
species (S1, S3, etc.) in the pathway. Consider first the system equation
involving the common species; for the pathway under consideration this
equation is given by:

ıS2

S2
D C

S2

E2

ıE2

E2
C C

S2

E3

ıE3

E3

We must remember that the change in the common species, ıS2=S2, is
non-zero (Figure 6.10). Therefore substituting in the local equations given
previously (Equation 6.8) leads to:

ıS2

S2
D �C

S2

E2
"
v2

S2

ıS2

S2
� C

S2

E3
"
v3

S2

ıS2

S2

Since ıS2=S2 ¤ 0, we can cancel the term dS2=S2 which leads to the first
concentration connectivity theorem:

�1 D C
S2

E2
"
v2

S2
C C

S2

E3
"
v3

S2

A second theorem can be derived by considering the effect of our modula-
tion on a distant species, for example S3. In this case, the system equation
now with respect to S3, becomes:

0 D
ıS3

S3
D C

S3

E2

ıE2

E2
C C

S3

E3

ıE3

E3

Note that the equation equals zero because our operations ensure that species
other than the common species do not change in concentration.

Substituting once again the local equations into the above system equation
leads to:

0 D
ıS3

S3
D �C

S3

E2
"
v2

S2

ıS2

S2
� C

S3

E3
"
v3

S2

ıS2

S2

or

0 D �
ıS2

S2

�
C
S3

E2
"
v2

S2
C C

S3

E3
"
v3

S2

�
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However, we know that dS2=S2 is not zero, therefore it must be the case
that:

0 D C
S3

E2
"
v2

S2
C C

S3

E3
"
v3

S2

That completes the proof for the concentration connectivity theorems. As
with the flux connectivity theorems, the concentration connectivity theo-
rems can be generalized to any number of steps that a species might inter-
act with.

To summarize, the connectivity theorems are:

Flux Connectivity Theorem with respect to a common metabolite, Sk
where r is the number of interactions it makes with neighboring reaction

steps.

rX
iD1

C JEi
"
vi

Sk
D 0 (6.9)

Concentration Connectivity Theorem with respect to the common
metabolite Sk where r is the number of interactions it makes with

neighboring reaction steps.

rX
iD1

C
Sk

Ei
"
vi

Sk
D �1 (6.10)

Concentration Connectivity Theorem with respect to the common
metabolite Sk and a distant metabolite, Sm where r is the number of

interactions it makes with neighboring reaction steps.
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rX
iD1

C
Sm

Ei
"
vi

Sk
D 0

Interpretation The connectivity theorems are important for a number
of reasons. The first and foremost is that the theorems link local effects in
terms of the elasticities to global effects in terms of the control coefficients.
Consider for example the following linear pathway.

v1
�! S1

v2
�!

The flux connectivity can be written in the form:

C JE1

C JE2

D �
"
v2

S1

"
v1

S1

That is the ratio of two adjacent flux control coefficients is inversely pro-
portional to the ratio of the corresponding elasticities. This means that
high flux control coefficients tend to be associated with small elasticities
and small flux control coefficients with large elasticities. This is explained
in terms of changes to species opposing changes in rates by species moving
in a direction opposite to the rate change. Since species with high elastici-
ties are able to oppose rate changes more effectively than small elasticities
then it follows that large elasticities are associated with small flux control
coefficients and vice versa.

The classic example of this is the case of a reaction operating near equi-
librium where the elasticities are very high relative to adjacent elasticities
on neighboring enzymes. In such situations the flux control coefficients
of near equilibrium enzymes are likely to be small. However, one must
bear in mind that it is the ratio of elasticities which is important and not
their absolute values. Simply examining the elasticity of a single reaction
may lead to an incorrect conclusion. Even more so, one must also con-
sider all the ratios of the elasticities along a pathway because even though
one elasticity ratio may suggest a high or low flux control coefficient on a
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particular enzyme, it is a consideration of the other ratios coupled to the
flux summation theorem that will give an absolute value to a particular flux
control coefficient. Control coefficients are truly system wide properties.

The examination of a single enzyme will not give an absolute
indication of the ability of that enzyme to control the flux or
species concentrations.

6.5 Response Coefficients

Control coefficients measure the response of a pathway to changes in en-
zyme activities. What about the effect of external factors such as inhibitors,
pharmaceutical drugs or boundary species? Such effects are measured by
another coefficient called the response coefficient. The flux response co-
efficient is defined by:

RJX D
dJ

dX

X

J

and the concentration response coefficient by:

RSX D
dS

dX

X

S

The response coefficient measures how sensitive a pathway is to changes
in external factors other than enzyme activities. What is the relationship
of the response coefficients with respect to the control coefficients and
elasticities?

Like many of the proofs in this chapter we can carry out a thought exper-
iment to investigate the response coefficients more closely. Consider the
pathway fragment below:

X
v1
�! S

v2
�!

where X is the fixed boundary species. Let us increase the activity of v1
by increasing the concentration of E1. This will cause the steady state flux
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and concentration of S and in fact all downstream species beyond v2 to
increase. Let us now decrease the concentration of X such that we restore
the flux and steady state concentration of S back to its original value. From
this thought experiment we can write the operations in terms of the local
response equation and a system response equation as follows:

ıv1

v1
D "

v1

X

ıX

X
C "

v1

E1

ıE1

E1
D 0

ıJ

J
D RJX

ıX

X
C C JE1

ıE1

E1
D 0

Note that the right-hand sides are zero because the thought experiment
guarantees that the flux has not changed due to these operations. We can
eliminate the ıE1=E1 term in the system response equation by substituting
the term from the local response equation. In addition if we assume that
the reaction rate for an enzyme catalyzed reaction is proportional to the
enzyme concentration, then we know that "v1

E1
D 1.

Proof that "vE D 1. If

v D
EkcatS

S CKm
D E f .S/

then

"vE D
@v

@E

E

v
D f .S/

E

Ef .s/
D 1

Therefore:

0 D RJX
ıX

X
� C JE1

"
v1

X

ıX

X

Since ıX=X ¤ 0 we cancel ıX=X yielding:

RJX D C
J
E1
"
v1

X
This

gives use the relationship we seek. It can be generalized for multiple ex-
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ternal factors acting simultaneously by summing up individual responses:

RJX D

nX
iD1

C JEi
"
vi

X

Likewise the response of a species, S to an external factor is given by:

RSX D

nX
iD1

CSEi
"
vi

X

The response coefficient carries an important message, which is that the
response of some external factor, X , is a function of two things, the effect
the factor has on the step it acts upon and the effect that the step itself
has on changing the system. This means than an effective external factor,
such as a pharmaceutical drug, must not only be able to bind and inhibit
the enzyme being targeted, but the step itself must be able to transmit the
effect to the rest of the pathway and ultimately affect the phenotype.

The ability of an external factor to influence a given species or flux
depends on:

1. The ability of the external factor to influence its immediate target.

2. The ability of the target to influence the network it is connected to.

6.6 Canonical Control Coefficients

Let us write the response coefficient equation in a different way. Consider:

C JEi
D
RJEi

"
vi

Ei
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Expand the terms and replace Ei with a general parameter p to yield:

C Jvi
D

dJ

dp

p

J

@vi

@p

p

vi

D
dJ

dvi

vi

J

What we have here is a parameterless control coefficient, C Jvi
, also called

a canonical control coefficient. It describes the effect of a change in the
reaction rate on the steady state level of the pathway flux. This may seem
like an odd definition because isn’t the change in reaction rate the same
as the change in steady state pathway flux? In this case not so. We have
to be clear what the derivative, dvi , in the denominator actually means.
Operationally the change indicated by dvi refers to a change in vi by some
unspecified means under the conditions where the reactants, products and
any other effectors remain constant. dvi in this context is also sometimes
referred to as the local rate, i.e the change in the reaction rate we could
impose if the reaction were not connected to the rest of the network. The
way dvi is changed is unspecified but it must be done via a parameter
of the system, not by a variable quantity such as one of the reactants or
products. The identity of the parameters will depend on the constraints put
on the system but common parameters are the concentration of expressed
enzyme, the catalytic constant of the enzyme or an external inhibitor.

For example, let us suppose that the change we make to alter vi is via a
change in the enzyme concentration, Ei . Such a change will cause an im-
mediate change dvi in the reaction rate. We now let the system go to its
new steady state. The dvi will cause changes in the immediate environ-
ment of the reaction, causing the enzyme’s substrate to decrease and its
product to increase. These changes in turn will propagate throughout the
system. Once the system has settled to the new steady state an inspection
of vi will reveal that the final change in rate does not equal the original
dvi (because the local environment has now changed). We refer to the
final change in vi as dJ , that is the change in flux through the system.
Taking the ratio of dJ and dvi and scaling we obtain the canonical control
coefficient. In many situations, the enzyme elasticity, "vi

Ei
D 1, that is:

C JEi
D C Jvi
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In other words the control coefficient we measure, C JE is identical to the
canonical control coefficient. Strictly speaking the summation and con-
nectivity theorems apply to the canonical control coefficients but because
"
vi

Ei
D 1 we can often safely express the theorems using the control coef-

ficients with respect to enzyme concentration.

6.7 Computing Control Equations

In previous sections we have seen how the control coefficients can give
useful information on the sensitivity of a network to parameter changes.
In addition we have seen that relationships exist between the control coef-
ficients and the elasticities. In this section we will look at ways to express
the control coefficients in terms of the elasticities of which there are a
number. The simplest way to derive the control equations is to combine
the summation and connectivity theorems. For example, consider a two
step pathway such as:

Xo
v1
�! S

v2
�! X1

whereXo andX1 are fixed species. There is one flux connectivity theorem
with respect to every species in a pathway so that in the above example
there will only be one connectivity theorem centered around S :

C JE1
"
v1

S C C
J
E2
"
v2

S D 0

In addition, there will be a flux summation theorem:

C JE1
C C JE2

D 1

These two equations can be combined to give expressions that relate the
control coefficients in terms of the elasticities, thus:

C JE1
D

"2S

"2S � "
1
S

C JE2
D �

"1S

"2S � "
1
S
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These equations, possibly the most important result of the theory, allows
us to understand how system responses depend on local properties. This
topic will covered in the next chapter.

For more complex pathways such as branches and moiety conserved cy-
cles, additional theorems are required to solve the equations. There is
however an alterative approach to deriving the control equations based on
a purely algebraic method. We will describe this in the next section.

Pure Algebraic Method

The pure algebraic method relies on the use of implicit differentiation of
the system equation. Consider the simplest two step pathway already con-
sidered:

Xo
v1
�! S

v2
�! X1

At steady state the rate of change of S is given by:

dS

dt
D v1 � v2 D 0

Assuming that v1 can be changed by perturbations to the concentration of
catalyzing enzyme, E1, we can write the rate of change as:

dS

dt
D v1.S.E1/; E1/ � v2.S.E1// D 0

Here we can stated explicitly how each reaction rate, vi is a function of
both the steady state species concentration and the perturbing parameter,
E1. Note that v1 is both a function of S and E1 and S in turn is a function
of E1. v2 is only a function of S and not directly a function of E1. We can
implicitly differentiate this equation to yield:

0 D
@v1

@S

dS

dE1
C
@v1

@E1
�
@v2

@S

dS

dE1

We can scale each of the derivatives by multiplying by the appropriates
factors, that is:

0 D
@v1

@S

S

v1

dS

dE1

E1

S
C
@v1

@E1

E1

v1
�
@v2

@S

S

v1

dS

dE1

E1

S
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which can be simplified to:

0 D CSE1
"1S C "

1
E1
� CSE1

"2S

Solving for CSE1
and assuming v1 is first-order with respect to E1 so that

"1E1
D 1 yields:

CSE1
D

�1

"1S � "
2
S

We can derive CSE2
in the same way by implicitly differentiating:

dS

dt
D v1.S.E2// � v2.S.E2/; E2/ D 0

The flux control coefficients can be computed in a similar way. For exam-
ple to find C JE1

we can implicitly differentiate:

J D v1.S.E1/; E1/

dJ

dE1
D
@v1

@S

dS

dE1
C
@v1

@E1

Scaling yields:
C JE1
D CSE1

"1S C 1

Substituting CSE1
gives:

C JE1
D �

1

"1S � "
2
S

"1S C 1 D �
"1S

"1S � "
2
S

6.8 Regulatory Coefficients

One of the questions that comes up sometimes is the distinction between
the phrase ‘control’ and ‘regulation’ [37, 69, 38]. In this book control is
used to indicate how much influence a given reaction step in a network has
on the system. This allows us to quantify the degree of control in a sys-
tem and gives us an operational definition of the word. It is therefore clear
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Xo
v1

S1
v2

S2
v3

X1

Figure 6.12 Three step linear pathway

what is meant. The word regulation however doesn’t have such a clear in-
terpretation. One way to think of regulation is that it describes how a given
system achieves control. For example, if a reaction step has a flux control
coefficient of 0.4 we can ask how that level of control is achieved. How-
ever this question a little vague and therefore difficult to quantify. Another
way to look at regulation is to investigate how the internal effectors change
in response to an external perturbation since it is the change in the internal
state that ultimately decides the final response. Let us consider the follow-
ing thought experiment on the three step pathway shown in Figure ??.

Let us consider a positive perturbation in the enzyme activity on the third
step, that is ıE3. This will cause S2 and S1 to fall and the steady state flux
to rise. If we focus on the second steps, v2, we can see that the change in
flux at this step was caused by changes in both S1 and S2. Each change
contributed to the final change in flux at this step. What we can do is
quantify this contribution. To do this we first write down the change in
flux at v2 by considering the local changes:

ıJ

J
D "

v2

S1

ıS1

S1
C "

v2

S2

ıS2

S2

Each term on the right indicates the contribution the term makes to the
overall flux change. We will call this the partition equation. The change
in the concentrations S1 and S2 can be computed from a knowledge of the
concentration control coefficients, that is:

ıS1

S1
D C

S1

E3

ıE3

E3

ıS2

S2
D C

S2

E3

ıE3

E3

We can now substitute these terms into the partition equation to obtain:

ıJ

J
D "

v2

S1
C
S1

E3

ıE3

E3
C "

v2

S2
C
S2

E3

ıE3

E3
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Dividing both sides by ıE3=E3, we obtain:

C JE3
D "

v2

S1
C
S1

E3
C "

v2

S2
C
S2

E3

Finally dividing both sides by C JE3
we get:

1 D "
v2

S1

C
S1

E3

C JE3

C "
v2

S2

C
S2

E3

C JE3

v3p
v2

S1
D "

v2

S1

C
S1

E3

C JE3

v3p
v2

S2
D "

v2

S2

C
S2

E3

C JE3

We will call the two terms, v3p
v2

S1
and v3p

v2

S2
on the right-hand side of

the equation the partitioned regulatory coefficients. These terms quantify
all the factors that contribute to a response around a given reaction step
as a result of a perturbation. In this case there are two partitioned coef-
ficients, one for S1 and a second for S2. The first quantifies how much
S1 contributes to the net change in v2 and the second term how much S2
contributes, both relative to a perturbation in E3. By way of example con-
sider the simulation shown in listing 6.1. We can compute the partitioned
coefficients for this system using the Jarnac commands:
p1 = p.ee (<p.J2>, p.S1) * p.cc(<p.S1>, p.Vm3) / p.cc(<p.J1>, p.Vm3);

p2 = p.ee (<p.J2>, p.S2) * p.cc(<p.S2>, p.Vm3) / p.cc(<p.J1>, p.Vm3);

println p1, p2, p1+p2;

p1 = -2.7260 p2 = 3.7259 sum = 0.9999

v3p
v2

S1
D �2:7260 v3p

v2

S2
D 3:7259

What do these numbers means? The first thing to note is that a positive
number means that the effector in question contributes by increasing the
reaction rate through the step. Conversely, a negative term means that the
effector contributes to decreasing the reaction rate. The magnitude of the
terms express the relative contribution of each. For example, of the total
change that occurred in v2 due to the original perturbation, 57% originated
from S2 and the remaining, 42% from S1. S2 therefore contributed the
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most and contributed to the overall positive change in reaction rate. This
highlights the significant contribution made by product inhibition during
a perturbation, an effect often ignored. Without product inhibition there
would be no effect on the reaction rate. It is interesting to note that be-
cause the summation is to one, product inhibition must always necessarily
contribute more in these simple systems.

The flux control coefficient for the flux through v3 with respect to E3 is
0.498. This is the amount of control that E3 has on the flux. This degree
of control is mediated at v2 by changes in S1 and S2 and the partitioned
coefficients measure the degree that each effector at v2 mediates this con-
trol. v3p

v2

S1
and v3p

v2

S2
measure the amount of regulation that occurs at

v2 and the relative contribution of each in order to achieve a flux control
coefficient of 0.498.

For the first step, v1, S1 contributes 100% to the regulatory response at v1
due to the perturbation at v3. This is expected given that S1 is the only
effector at v1. For v3 we have the additional effector in the perturbation
itself in E3. The partition equation is given by:

1 D
"
v3

E3

C JE3

C "
v3

S2

C
S2

E3

C JE3

1 Dv3 p
v3

E3
C
v3 p

v3

S2

We can see from this that even though there is only on internal regulator,
S2, we must also consider the contribution from the external perturbation
in E3. Running a simulation on the previous three step model reveals the
values for the partition coefficients:

v3p
v3

E3
D 2:0 v3p

v3

S2
D �1

From this we can see that E3 is twice as important at regulating the flux at
v3 as is S2.

In Chapter 10 we will look at negative feedback in more details and con-
sider again the use of regulation coefficients in understanding regulation.
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Further Reading

1. Rafael Moreno-Sanchez, Emma Saavedra, Sara Rodrguez-Enriquez,
and Viridiana Olin-Sandoval (2008) Metabolic Control Analysis: A
Tool for Designing Strategies to Manipulate Metabolic Pathways,
Journal of Biomedicine and Biotechnology, Volume 2008, Article
ID 597913, doi:10.1155/2008/597913

Exercises

1. At steady state all reactions rate are equal in a linear chain of reac-
tions. Explain this statement.

2. The control coefficients are defined in terms of infinitesimal rela-
tive changes. An alternative would be to define them using large
finite changes, that is �J=�E which could be more easily mea-
sured. What is the main disadvantage to defining control coefficients
in terms of large finite changes?

3. List three properties of control coefficients.

4. In a given reaction step Ei , the enzyme concentration is increased
by 15%. The steady state change in flux was found to be 5% and
the change in a species, Sj changed by -3%. Estimate the values
for the flux control coefficient, C JEi

and the concentration control

coefficient, CSj

Ei
.

5. In last question you were asked to find estimates for the control co-
efficients. Why were you ask to estimate the control coefficients and
not their precise values?

6. A given reaction step has a flux control coefficient of 0.6. If the
enzyme concentration is increased by 40% what is the approximate
change in the steady state flux?

7. Two reactions have flux control coefficients of 0.2 and 0.3 respec-
tively. The concentration of the first enzyme is changed by 10% and
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the second enzyme by 30%, What is the approximate change in the
steady state flux if both changes are made?

8. What assumption(s) are made in the derivation of the summation
theorems?

9. In a linear pathway, the concentration control coefficient for a give
species, S is found to be negative with respect to one enzyme but
positive with respect to every other enzymatic step. Where is the
species, S located in the pathway, explain your answer.

10. The last four steps in a five step pathway are found to have concen-
tration control coefficients for a species, S , of -0.1, -0.2, -0.5 and
-0.05. What is the concentration control coefficient with respect top
the first step?

11. Locate five biochemistry and molecular cell biology text books and
describe how the books describe regulation in pathway with respect
to control of flux. If they mention rate-limiting steps or rate-determining
steps, describe how they justify these statements if at all.

12. Why are rate-limiting steps unlikely to be found in natural path-
ways?

13. A given species S that has a single production step and a single
consumption step, the elasticity of the production step with respect
to S was found to be -1.6 and for the consumption step 0.12. a)
Explain why the production step elasticity is negative. b) From the
information what can you say about the flux control coefficients of
the production and consumption steps?

14. Explain why examination of a single enzyme in a pathway will not
necessarily give a good indication of how flux limiting the enzyme
is.

15. The response coefficient relationship has two important lessons for
those looking to develop new therapeutic drugs, what are they?

16. What is a canonical control coefficient?
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17. Given the model described by the Jarnac script 6.2, ignore every-
thing in the script after line 14, find the flux control coefficient for
each step and confirm numerically that the flux summation theorem
holds. Use perturbations to estimate the flux control coefficients.
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6.A Jarnac Scripts

p = defn cell

   J0: $Xo -> S1; (E1/0.3)*(0.5*Xo-100*S1)/(1+Xo+S1);

   J1: S1 -> S2; E2*(3*S1-0.2*S2)/(1+S1+S2);

   J2: S2 -> S3; E3*(500*S2-10*S3)/(1+S2+S3);

   J3: S3 -> S4; E4*(200*S3-2*S4)/(1+S3+S4);

   J4: S4 -> $X1; E5*(200*S4-2*X1)/(1+S4+X1);

end;

p.Xo = 10;  p.X1 = 0;

p.E1 = 3.4; p.E2 = 8.2;

p.E3 = 2.3; p.E4 = 1.8;

p.E5 = 4.5;

p.S1 = 0; p.S2 = 0; p.S3 = 0; p.S4 = 0;

m1 = p.sim.eval (0, 0.2, 100, [<p.time>, <p.J0>]);

setColumnName (m1, 1, "E2");

p.E2 = p.E2*4;

m2 = p.sim.eval (0.2, 0.4, 200, [<p.time>, <p.J0>]);

alldata = augr(m1, m2);

setAxes ({0, 0.4, 0, 5});

graph (alldata);

str = exportpgfplot (alldata);

copyToClipboard (str);

Listing 6.2 Script for Figure 6.2

p = defn cell

   J0: $Xo -> S1; E1*(10*Xo-2*S1)/(1+Xo+S1);

   J1:  S1 -> S2; E2*(10*S1-2*S2)/(1+S1+S2);

   J2:  S2 -> S3; E3*(10*S2-2*S3)/(1+S2+S3);

   J3:  S3 -> S4; E4*(10*S3-2*S4)/(1+S3+S4);

   J34: S4 -> $X1; E5*(10*S4-2*X1)/(1+S4+X1);

end;

p.Xo = 10;  p.X1 = 0;

p.E1 = 3.4; p.E2 = 8.2;
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p.E3 = 2.3; p.E4 = 1.8;

p.E5 = 4.5;

p.S1 = 8.359; p.S2 = 17.68; p.S3 = 6.938; p.S4 = 0.4816;

savedState = p.pv;

//  --------------- E1 ---------------

p.sim.eval (0, 80, 500);

m1 = p.sim.eval (0, 10, 100, [<p.Time>, <p.J0>]);

p.E1 = p.E1*1.2;

m2 = p.sim.eval (10, 30, 100, [<p.Time>, <p.J0>]);

alldata = augr (m1, m2); // Combine the two segments

setColumnName (alldata, 2, "E1");

//  --------------- E2 ---------------

p.pv = savedState; p.sim.eval (0, 80, 500);

m1 = p.sim.eval (0, 10, 100, [<p.J0>]);

setColumnName (m1, 1, "E2");

p.E2 = p.E2*1.2;

m2 = p.sim.eval (10, 30, 100, [<p.J0>]);

alldata = aug (alldata, augr(m1, m2));

//  --------------- E3 ---------------

p.pv = savedState; p.sim.eval (0, 80, 500);

m1 = p.sim.eval (0, 10, 100, [<p.J0>]);

setColumnName (m1, 1, "E3");

p.E3 = p.E3*1.2;

m2 = p.sim.eval (10, 30, 100, [<p.J0>]);

alldata = aug (alldata, augr (m1, m2));

//  --------------- E4 ---------------

p.pv = savedState; p.sim.eval (0, 80, 500);

m1 = p.sim.eval (0, 10, 100, [<p.J0>]);

setColumnName (m1, 1, "E4");

p.E4 = p.E4 *1.2;

m2 = p.sim.eval (10, 30, 100, [<p.J0>]);

alldata = aug (alldata, augr (m1, m2));

//  --------------- E5 ---------------

p.pv = savedState; p.sim.eval (0, 80, 500);

m1 = p.sim.eval (0, 10, 100, [<p.J0>]);

setColumnName (m1, 1, "E5");



6.A. JARNAC SCRIPTS 201

p.E5 = p.E5 *1.2;

m2 = p.sim.eval (10, 30, 100, [<p.J0>]);

alldata = aug (alldata, augr (m1, m2));

p.pv = savedState;

setAxes ({0, 30, 14, 18});

graph (alldata);

str = exportpgfplot (alldata);

copyToClipboard (str);

Listing 6.3 Script for Figure 6.3
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7
Understanding Metabolism

7.1 Introduction

This book is about the control of biochemical systems with a focus on
metabolic pathways. The ability to control reaction rates and concentra-
tions in a changing environment is one of the characteristics of living sys-
tems. Cells must monitor prevailing conditions and make appropriate de-
cisions. Cells make sure, for example, that adequate phosphate and redox
potentials are available at all times. They also have to ensure that major
transitions from one state to another (for example cell division) avoid any
disruption to subsystems that are essential to cell viability. These activities
presumably require a great deal of coordination and control and indeed
over sixty years of research has uncovered a myriad number of feedback
and feedfoward control loops together with many less obvious means of
control.

It is worth examining some of the history of how we came to understand
control in biological cells. The first thing to note is that understanding
control in any complex system is difficult. It was difficult in the past and it
is difficult now. Man’s propensity to grasp the many factors involved in a
complex system is limited. As a result, reasoning about complex systems
cannot be done by intuition alone but requires expertise and the application

203
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of approaches from mathematics, engineering and computer science.

7.2 Early Quantitative Efforts

During the early part of the 20th century it became apparent that chemical
processes in biological cells were a result of sequences of separate chemi-
cal transformations. The first such sequence of steps discovered, later to be
called a ‘pathway’, was yeast glycolysis. Subsequently, many other path-
ways were discovered including the Calvin and Krebs cycle and the many
pathways involved in amino acid biosynthesis and degradation. As early
as the 1930s, various individuals began taking a theoretical interest in the
dynamic properties of such pathways. Much of the early work focused on
the question of limiting factors. This may have originated from a statement
by Blackmam [6] in 1905 who stated as an axiom: “when a process is con-
ditioned as to its rapidity by a number of separate factors, the rate of the
process is limited by the pace of the slowest factor”. This implied that the
understanding of a complex system could be accomplished by identifying
the limiting factor; and so was born the idea of the rate-limiting step, the
pacemaker, the bottleneck, or master reaction.

The Pacemaker

Although the idea of a pacemaker reaction in a pathway was extremely at-
tractive, there were opponents to the idea even as early as the 1930s. Bur-
ton [12] was probably one of the first to point out that: “In the steady state
of reaction chains the principle of the master reaction has no application”.
Hearon [31] made a more general mathematical analysis and developed
strict rules for the prediction of mastery in a linear sequence of enzyme-
catalysed reaction. Webb [87] gave a severe criticism of the concept of the
pacemaker and of its blind application to solving problems of regulation
in metabolism. Waley [85] made a simple but clear analysis of simple lin-
ear chains that showed that rate-limitingness was a shared commodity in
a chain of reactions. Later authors from the biochemical community, such
as Higgins [35] but particularly Heinrich and Rapoport [33] supported the
same conclusion with more advanced analysis. In parallel with this work
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other communities were coming to the same conclusion. Most notably
Sewell Wright, a geneticist, wrote a treatise on ‘Physiological and Evolu-
tionary Theories of Dominance’ [90] where he discussed the limiting fac-
tors in relation to hypothesized networks controlled by ‘genes’. This work
was taken up by Kacser and Burns [46] in Edinburgh and was developed
in to a major theory of control in pathways. Heinrich and Rapoport [33]
simultaneously accomplished the same feat but from a more biochemical
perspective. Finally Savageau [75] in the United States, an engineer by
training, developed the same approach and reached similar conclusions.

7.3 Prevailing Ideas

Nevertheless, although there was considerable theoretical and some exper-
imental work that suggested that the concept of the pacemaker was erro-
neous, the biochemical community, for what ever reason, ignored these
results. Instead the biochemistry community, which had largely morphed
into molecular biology in the 1970s developed its own framework for un-
derstanding the operating principles of cellular networks. This framework
was derived largely through an intuitive approach, based neither on ex-
perimental evidence or mathematical reasoning. This ultimately led to a
number of unfortunate miss-understandings in how cellular networks op-
erate, misunderstandings that still prevail today.

One of the chief concepts in the traditional control framework is the pace-
maker or rate-limiting step. The rate-limiting step is thought to be located
near the start of a pathway and because it is rate-limiting, the pathway is
controlled by this one key step. In addition, it is proposed that rate-limiting
steps are likely to be the site for allosteric regulation. There were a number
of criteria that are used to identify possible rate-limiting step though there
was no real definitive test. These criteria included:

� The rate-limiting step is the slowest step in the pathway.

� The rate-limiting step has the lowest substrate-affinity (highestKm),
this means that the reaction velocity is the lowest when saturating
substrate concentrations are present at all enzymes.
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� The rate-limiting step will be the regulated step.

� The rate-limiting step is an irreversible reaction.

� The rate-limiting step is usually the first step in the pathway.

� The rate-limiting step is far from equilibrium.

No single criterion could positively identify a rate limiting step but the
cross-over theorem is one that was considered important. The technique
worked as follows. A metabolic pathway is perturbed by adding an in-
hibitor of one of the enzyme catalyzed steps and the metabolite concentra-
tions before and after the inhibited step are measured. If the inhibited step
is rate limiting then those metabolites upstream would increase and those
downstream decrease. The technique was originally developed by Britton
Chance [13] in the 1950s as a means to study the electron transport chain in
mitochondria. The advantage here was that many of the intermediates had
characteristic absorption spectra. The method was used to identify the sites
where electron transfer was being coupled to ATP production. Although
applicable to the electron transport chain (Fell, 1996), its subsequent use
to identify sites of regulation in metabolic pathways has been considered
on theoretical grounds to be untrustworthy (Heinrich et al, 1974).

Regulatory Enzymes and Feedback Regulation

A key concept in traditional metabolic control theory is that feedback reg-
ulation by an end product will necessarily act on the rate-limiting step.
Control may also be exerted by inducing or repressing the synthesis of the
rate-limiting enzyme. Rate-limiting enzymes could therefore be identified
simply by locating regulated steps. For example, a classic rate limiting step
in glycolysis was phosphofructokinase since it was regulated by many ef-
fectors. Such an assertion makes perfect sense if metabolism it seen as a
series of connected pipes and tanks with valves1 that turn on and off the
flow of water. However metabolism is not like this, in particular the valves

1Taps or faucets depending on where you live in the world.
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are part of the system and cannot be independently controlled of the path-
way. This makes understanding how pathways are controlled much more
subtle. Measurements (ref) have shown for example that phosphofructok-
inase is in fact not rate-limiting even though it is heavily regulated. Since
the development of recombinant technology in the late 70s, the ability to
control enzyme levels has become relatively easy. There are many ex-
periments reported where over expression of a regulated step resulted in
no change in the pathway flux even though such steps were considered
rate limiting (tryp reference, pfk and find others). Even in the face of
considerable experimental evidence the idea that regulated steps are rate
limiting continues to persist.

7.4 A Modern Understanding of Metabolism

Although the metabolic parts list is almost complete as witnessed by the
development of genomic scale metabolic reconstruction (ref) our under-
standing of how metabolism operates is still primitive and incomplete. The
last four decades however has seen some progress as described in the ear-
lier chapters of this book. The traditional concepts of metabolic control
described in the previous sections are logically untenable and many expe-
riential measurements support this notion. In addition there are now many
examples where metabolic engineers have discovered that the traditional
approach is next to useless in predicting how to engineer a metabolic path-
way. In this final chapter I will summarize some of the more modern op-
erating principles that can help us understand and ultimately successfully
engineer metabolic pathways.

7.5 Operating Principles

� Democracy

A living cell is a molecular democracy with distributed decision
making.

Possibly the most important key concept to understand is that the
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components of a cell do not act in isolation. This seems a very obvi-
ous thing to say but how may times do we hear about a key enzyme,
a master protein, a hub, a hot spot or other metaphor in an attempt
to reduce a complex system to one component. In practice we of-
ten try to simplify a complex problem down to a single entity. One
example of this is related to circadian rhythms or any oscillatory
system in a cell. The temptation is to find the ‘oscillatorphore’, that
single protein responsible for the oscillation. No such protein exists
of course. The oscillator is the result of a collection of components
acting together. Likewise in metabolism, the behavior we observe is
the result of all enzymes acting in unison. The idea that a complex
pathway can be distilled down to a single enzyme is too simplistic.

� Context

The behavior of a part or set of parts only makes sense when
related to its functional context.

The influence that a cellular component has on the phenotype is al-
ways modified according to the context in which we find the com-
ponent. This is related to the first principle but adds the qualifying
point that the influence of a component can change according to con-
text, and context can change according to the state of the organism.

� Operation

A living cell does not operate like a digital computer, with a program
and a sequential operation. There have been many times in the past
when we have tried to compare a digital computer to a living cell
sugegsting that cells can be programmed just like a digital computer.
This is no surprise since throughout history we have often tried to
compare natural systems to what ever is the current major techno-
logical development at the time. Biological cells are however quite
different from digital computers. Biological cells work in parallel,
digital computer work in a sequential mode; biological cell process
information in many ways, including analog and sometimes digital.
The major problem in comparing a digital computer to a biological
cell is that it puts the mind into the wrong mode of thinking and
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colors subsequent analysis of a biological system which can lead to
incorrect conclusions.

� Rate-Limiting Steps

There is no such thing as a rate-limiting step, only degrees of limit-
ingness which can be quantified.

� Systemic Property

Whether an enzyme limits flux or not is a systemic property and
cannot be determined from looking at the enzyme alone.

� Front-Loading

In an unregulated pathway with only mass-action or Michaelis-Menten
kinetics, sensitivity of the flux to enzyme changes is biased toward
the front of the pathway.

� Feedback

Steps regulated by feedback control (or within the feedback loop)
are insensitive to changes in enzyme activity (eg by gene expression
changes of addition of inhibitors).

� Homeostasis

Metabolic feedback and the rarer feed-forward loops ensure home-
ostasis of metabolites far from equilibrium through the control of
supply and demand. They are not involved in flux control.

� Flux Control

Flux control is achieved by targeted up or down regulation of a set
of enzymes or entire pathways either by gene expression changes or
much more rapid kinase/phosphatase action on enzymes

� Control is Dynamic

The ability of a give step to control a flux or concentration is dy-
namic and changes according to the state of the cell.
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7.6 Characteristics of a bootleneck?

What are they?

7.7 ‘Excess’ Enzymes

Many the misunderstandings of how metabolism operates can be blamed
on the use of verbal logic, intuition and inappropriate analogies (such as
connected tanks of water or traffic flow). A key area of confusion is the
observation that some enzymes appear to be in excess. That is the Vmax
of the enzyme exceeds by a wide margin the range of pathway fluxes that
will flow through the enzyme. Without further analysis, it seems that evo-
lution has made a mistake and is maintaining high levels of enzyme con-
centrations without any apparent fitness advantage. This however cannot
be the case because any excess enzyme is likely to reduce the fitness of
an organism and therefore by selection any excess enzyme will eventually
disappear, and yet the excess enzyme observation is still discussed in the
literature.

paradox

7.8 Why are regulated enzymes regulated?

Text

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. Ambro-
sius Publishing. ISBN: 978-0982477311
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Exercises

1. A question
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8
Measuring

8.1 Introduction

Up to now we’ve largely discussed theory. However, without the ability
to make measurements and test predictions on real biological systems, the
approach outlined in the previous chapters will find little use in practice.
In this chapter we will outline various methods that have been developed
to measure control coefficients and some examples of applications to real
metabolic pathways.

Measuring Control Coefficients

Various ways have been used in the past to measure control coefficients
experimentally. All revolve around the need to change either the concen-
tration or activity of an enzyme or protein. The different methods can be
categorized into six general approaches:

213
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1. Use of classical genetics to manipulate gene expressions
2. Titration of enzymes with specific inhibitors
3. Computer modeling
4. Double modulation method
5. in vitro reconstitution and enzyme titration
6. Gene engineering to change enzyme levels in vivo

Of the six approaches, we will only consider the experimental based meth-
ods, this means excluding computer modeling form our consideration.

8.2 Using Classical Genetics

There is an interesting story related to the origins or metabolic control an-
tilysis from the Kacser lab1. Early on it was noted that a mutation in one
of the amino acid biosynthesis enzymes in the fungus Neurospora crassa
yielded a loss of 95% enzyme activity and yet resulted is hardly any change
to the observed phenotype. The question that arose was how could this be?
Instinctively one might try to answer this question by studying the enzyme
in question, perhaps studying its kinetics in details understanding its cat-
alytic activity by determining its protein structure. However this would
not ultimately explain the effect of enzyme loss on the phenotype. In an
insightful move, the Kacser lab decided that the answer must lie within the
context in which the enzyme operated. That is the network within which
the enzyme operated. It was this observation that began the study of how
networks behaved and how phenotype was related to phenotype, not in
terms of individual proteins or enzymes but in terms of networks. Sim-
ilar conclusions were made by the other two groups who also developed
MCA independently, namely the Heinrich and Rapoport in Berlin and and
Savageau ion Michigan, USA.

The Kacser lab investigated the amino acid biosynthesis pathway by chang-
ing the copy number of a gene using classical genetics [23]. This assumed
that the activity or concentration of the enzyme or protein in question was
proportional to the copy number. This work was carried out using the

1personal communication
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fungus Neurospora crassa where arginine biosynthesis was studied. This
fungus forms multinucleated mycelia that generate polyploid spores. By
mixing different ratios of spores containing genes encoding wild and mu-
tant enzymes it was possible to generate mycelia with different activities of
the arginine pathway enzymes. From such experiments it was determined
that four enzymes, acetyl-ornithine aminotransferase, ornithine transcar-
bamoylase, arginine succinate synthetase, and arginine-succinate lyase all
had flux control in the range 0.02 to 0.2. This indicated that none of the
enzyme exerted significant control of arginine synthesis.

Another study by the same group was to investigate the flux control of alco-
hol dehydrogenase (ADH) in Drosophila melanogaster. ADH is present in
three alleles that encode isoforms with different maximal activities. When
mixing the various combinations including mutations of the isoforms it
was possible to change the total activity of ADH and measure the ethanol
production. From this study is was concluded the ADH has a flux control
coefficient of zero zero.

8.3 Genetic Engineering

Neurospora crassa and Drosophila melanogaster were special cases where
gene dosage could be engineered by classical genetic methods. However
most systems are no so easily manipulated. As a result alterative methods
based on inhibitors were developed. In particular oxidative phosphoryla-
tion is susceptible to a large repertoire of inhibitors. Control coefficients
were estimated by titrating in a given inhibitor and measuring the effect
on a flux or species concentration [30]. By taking into account how the
inhibitor acted it is possible to obtain estimates for the control coefficient
of the inhibited step.

With modern developments in genetic engineering and molecular biology,
it is now relatively straightforward to estimate control coefficients. For
example, inducible or repressor operator sites can be added to a gene of
interest and the effect of up regulating or down regulating the wild-type
activity measured. In addition, protein levels can be knocked down by
using RNA antisense. This method was used to estimate the flux control
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coefficient for ribulose-bisphosphate-carboxylase (Rubisco) which is re-
sponsible for fixing carbon dioxide in plants [80]. The traditional view
has been that Rubisco catalyzes a rate-limiting step, that is a step with a
high flux control coefficient. However, studies that used DNA antisense
in tobacco plants to reduce the level of Rubisco showed that during high
illumination, flux control was estimated in the range 0.69 to 0.83 and in
moderate illumination or high carbon dioxide levels, the flux control fell
dramatically to 0.05 to 0.2. This study highlights two important points that
were highlighted in the theoretical analysis, the first is that control is not
fixed but depends on external conditions and secondly that rate limiting-
ness cannot be determined by simple inspection of the pathway but must
be actively measured.

8.4 Titration by Inhibitors

The first approach devised to estimate control coefficients that the use of
classical genetic to manipulate gene copy number. This however is diffi-
cult to do and requires considerable expertise in genetic manipulation. In
the late 1970s and early 1980s it was realized that inhibitors could also be
used to change protein and enzyme activity. One of the most well studied
pathways is oxidative phosphorylation due in part to the wide variety of
available inhibitors. Inhibitors include irreversible, for example cyanide
that can bind to cytochrome c oxidase (Site 3), noncompetitive inhibitors
such as Rotenone that can bind to NADH-CoQ-oxidoreductase (Site I) or
Antimycin that can bind to CoA-cytochrome c oxidoreductase and com-
petitive such as malate that binds to dicarboxylate transporter.

By titrating the inhibitor and measuring the steady state response it is pos-
sible to estimate the control coefficient at the inhibited site by extrapolat-
ing the response curve back to zero inhibitor. Each inhibitor type however
must be treated differently. In the last Chapter the response coefficient was
introduced:

RJX D
dJ

dX

X

J

The response coefficient describe the effect of an external signal, X on a
pathway. The response coefficient can be expressed in terms of the control



8.4. TITRATION BY INHIBITORS 217

coefficient and the external signal elasticity using the relationship:

RJX D C
J
E "

v
X

Expanding this relationship yields:

dJ

dX

X

J
D
dJ

dE

E

J

@v

@X

X

v

We can cancel the X terms on both sides and rearranging so that C JE is on
one side we obtain:

C JE D
dJ

dXJ

. @v

@Xv

The term dJ
dXJ

can be derived form the initial slop of the inhibition curve
and @v

@Xv
from the inhibition characteristics of the inhibited enzyme. Since

we seek the value of C JE when there is no inhibitor present we should
measure both terms when X D 0. For a non-competitive inhibitor it is
possible to show that the control coefficient at X D 0 is given by:

C JX D �
Ki

J

dJ

dX

where Ki is the inhibition constant. For a competitive inhibitor titration,
the control coefficient can be computed from the equation:

C JE D �
Ki .Sj =Km C SjC1=KmC1 C 1

J

dJ

dX

Example 8.1

The following data (constructed from a simulated pathway with added noise) was
collected from a pathway and measures the flux through the pathway at various
concentration of an irreversible inhibitor. Use the data to estimate the flux control
coefficient through the pathway.
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Inhibitor Concentration Pathway Flux

0 1.5
0.2 1.4
0.3 1.5
0.4 1.2
0.5 1.0
0.6 0.8
0.7 0.7
0.8 0.3
0.9 0.2
0.94 0.0

A plot of the data is shown below

0 0:2 0:4 0:6 0:8 1
0

0:5

1

1:5

2

Line: y D �0:553 x C 1:52

Inhibitor

Pa
th

w
ay

Fl
ux

,J

The curve that follows the points is not known in general which means it is dif-
ficult to select a suitable nonlinear function to fit the points. Instead we will take
the first four data points and plot a straight line through them. This is shown by
the blue continuous line on the plot. The slope of the fitted line was found to be
-0.553. This corresponds to the dJ=dX term in equation 8.1. The flux at zero
inhibitor is 1.5 and the Imax is 0.94, the concentration of inhibitor that yields zero
flux. Taking these together and inserting the values into equation 8.1, we obtain
the flux control coefficient:

C JE D �0:553
0:94

1:5
D 0:35
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The simulation model that was used to obtain the data gave a control coefficient
of 0.367 which is close to the estimated value. The key to obtaining a reasonable
estimate is to secure sufficient points at low inhibitor concentration in order to
compute a best line fit through the first few points. Attempts to fit polynomials,
logistic curves or hyperbolic curves will yield poor estimates.

Irreversible Inhibitors

Irreversible inhibitors are a special case, in the sense that the amount of
inhibitor required to completely inhibit the enzyme should be equal to the
amount of enzyme. This assumes that one molecule of inhibitor binds to
a single enzyme and completely inhibits the enzyme’s activity. That is
Xmax D E. The equation to compute the control coefficient using an
irreversible enzyme is then given by:

C JE D �
Xmax

J

dJ

dX
(8.1)

The negative sign is included because the slope of dJ=dX is negative.

8.5 Double Modulation Technique

The double modulation method, first proposed by Kacser and Burns in
1979 is an elegant method for estimating elasticities in vivo. Consider the
pathway:

v1 v2 v3 v4

"1 "2 "3 "4 "5 "6
Xo

- S1
- S2

- S3
- X4

Let us focus on reaction v3 flanked by species S2 and S3 respectively. Let
us make a perturbation in the upstream source metabolite, Xo. Changes
will propagate through the pathway resulting in changes in S2 and S3. If
the changes are sufficiently small we can write down the change in flux
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using the following relation:

ıJ 1

J 1
D "

v3

S2

ıS12

S12
C "

v3

S1
3

ıS13

S13
(8.2)

We can now carry out a separate experiment where we perturb the down-
stream sink pool X4. Again, we will observe propagations in the pathway
resulting in changes to S2 and S3. Note that because the disturbance is
from another source, the changes in S2, S3 and flux J will be different.
That is:

ıJ 2

J 2
D "

v3

S2

ıS22

S22
C "

v3

S3

ıS23

S23

We now have two equations in two unknowns, "v3

S2
and "v3

S3
. Assuming

we can measure the changes in metabolite and fluxes we can use the two
equations to solve for the elasticities. In principle, if we measured all the
metabolite changes in the entire pathway we could estimate all the elastici-
ties. Once we have the elasticities the control coefficients can be estimated
using the methods described in the last chapter. Another point work mak-
ing, it doesn’t matter what changes are made to illicite the perturbation, we
used Xo and X4 but change sin enzyme levels or addition of inhibitors are
equally valid ways to perturb the system. The method has been generalized
by Acerenza and Cornish-Bowden [1].

Example 8.2

Using the same system from the previous example, the following perturbation data
were obtained by carrying out two perturbations, one upstream and one down-
stream of the reaction under observation.

Before any perturbations were made the following reference flux and concentra-
tions were recorded:

J D 1:5

S1 D 0:74

S2 D 0:92

A perturbation that involved increasing the input pool by 30% was applied the
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following new steady state flux and concentrations were recorded:

J D 1:6

S1 D 0:91

S2 D 1:15

It was noted that it was not possible to perturb the output metabolite form the
pathway, instead an inhibitor was applied to one of the downstream steps. The
degree of inhibition at the inhibited site is not known (and is irrelevant) but the
new steady state flux and concentrations were recorded:

J D 1:28

S1 D 0:905

S2 D 1:32

Form this data estimate the two elasticities, varepsilon1 and "2 with respect to
S1 and S2 respectively. Formulate two equations, corresponding to each pertur-
bation, of the form:

ıJ

J
D "1

ıS1

S1
C "1

ıS2

S2

From the data these two equations are:

0:1

1:5
D "1

0:17

0:74
C "2

0:23

0:92

�0:22

1:5
D "1

�0:165

0:74
C "2

0:4

0:92

Evaluating the ratios we obtain:

0:066 D "1 0:23C "2 0:25

�0:14 D �"1 0:23C "2 0:43

Solving for "1 and "2 yields:

"1 D 1:531 "2 D �1:144

The values form the model are "1 D 1:69 "2 D �1:3. The discrepancy in
the values is a result of two factors. The first is that all values were rounded
down to two decimal places, secondly and more importantly we made relatively
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large perturbations. The double modulation method depends on making small
enough changes such that the relationship describe by equation 8.2 remains true.
If the perturbations are too high equation 8.2 is only an approximation. Ideally
one might make multiple perturbation at different strengths, plotting the resulting
changes and extrapolating the plotted response back to the zero axis.

Determining Elasticities from Multiple Measurements of Flux Rates and
Metabolite Concentrations. Christoph Giersch, uropean Journal of Bio-
chemistry Volume 227, Issue 1-2, pages 194Ű201, January 1995

8.6 Reconstitution Methods

Further Reading

1. Kacser H and Burns J. (1979) Molecular Democracy: Who Shares
the Controls? Biochem Soc Trans, 7, 1149-1160

2. Rafael Moreno-Sanchez, Emma Saavedra, Sara Rodrguez-Enriquez,
and Viridiana Olin-Sandoval (2008) Metabolic Control Analysis: A
Tool for Designing Strategies to Manipulate Metabolic Pathways,
Journal of Biomedicine and Biotechnology, Volume 2008, Article
ID 597913, doi:10.1155/2008/597913

Exercises

1. Estimate the other two flux control coefficients using the data below:



9
Linear Pathways

9.1 Basic Properties

Linear pathways represent the simplest network motif and are a good start-
ing point to begin to gain insight into how cellular networks operate. The
simplest linear pathway is one where the kinetics are mass-action. Con-
sider the following linear pathway:

Xo ! S1 ! S2 ! : : : Sm ! X1 (9.1)

This pathway has m floating species and n reactions (n D m C 1). Xo
and X1 are are fixed species representing the source and sink pools re-
spectively. We can assume that each reaction obeys the following simple
reversible mass-action kinetic law:

vi D kiSi�1 � k�iSi (9.2)

where ki and ki�1 are the forward and reverse rate constants respectively.
Si�1 is the substrate and Si the product. Recall that the equilibrium con-

223
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stant for such as simple reaction is given by

Keq D q D
ki

k�i
D

Si

Si�1

which means we can replace the reverse rate constant and rewrite the rate
law as

vi D ki

�
Si�1 �

Si

qi

�
(9.3)

This model is simple enough that we can derive the analytical equation for
the steady state flux through the pathway. One way to do this is to first
start with a two step pathway:

Xo ! S1 ! X1

where the rates for the two steps are given by:

v1 D k1

�
X0 �

S1

q1

�
v2 D k2

�
S1 �

X1

q2

�
By setting v1 D v2 we can solve for the steady state concentration of S1
and then insert this solution into one of the rate laws. This leads to the
steady state flux:

J D
Xoq1q2 �X1
1

k2
q1q2 C

1

k1
q2

We might also note that the steady state solution for S1 is given by:

S1 D
q1

q2

k2X1 C k1q2Xo

k1 C k2q1

We can also derive the flux equation for a three step pathway and by com-
paring the two solutions we can deduce that the flux for a pathway of arbi-
trary length will be given by:

J D

Xo

nY
iD1

qi �X1

nX
iD1

1

ki

0@ nY
jDi

qj

1A (9.4)
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where n is the number of steps in the linear chain of reactions. For example
if the pathway has four steps then the steady state flux is given by

J D
Xo q1q2q3q4 �X1

1

k1
q1q2q3q4 C

1

k2
q2q3q4 C

1

k3
q3q4 C

1

k4
q4

and so on. The first thing to note about the flux relationship is that the flux
is a function of all kinetic and thermodynamic parameters. There is no
single parameter that determines the flux completely. This means that for
a pathway with randomly assigned parameters it is extremely unlikely to
have the first step as the rate limiting step. It would require a very unlikely
set of parameter values for that to occur.

From the flux expression we can also compute the corresponding flux con-
trol coefficients. For this we need to differentiate the flux equation with
respect to an enzyme activity-like parameter. One way to do this is to add
an ei term to each rate law, such as:

vi D eiki

�
Si�1 �

Si

qi

�
We can eliminate the ei terms afterwards by setting them to one. The result
of this yields the following expression for the flux control coefficient of the
i th step:

C Ji D

1

ki

nY
jDi

qj

nX
jD1

1

kj

nY
kDj

qk

(9.5)

Note that the sum,
P
C Ji D 1 in accordance to the flux summation the-

orem. The equation also indicates that, at least in this case, the control
coefficients are less than one but greater than zero, 0 � C Ji � 1.

For a three step pathway the flux control coefficients for each step will be
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given by:

D D
1

k1
q1q2q3 C

1

k2
q2q3 C

1

k3
q3

C J1 D
1

k1
q1q2q3=D

C J2 D
1

k2
q2q3=D

C J3 D
1

k3
q3=D

Each term in a numerator can also be found in the denominator.

9.2 Product Insensitive Steps and Fast Reactions

From the flux control coefficient equation we can make some general state-
ments. Let us assume for example that each equilibrium constant, qi is
greater than one, qi > 1 and also that all forward rate constants are equal
to each other and all reverse rate constants are equal to each other. This
also means that all equilibrium constants are the same. If we now take the
ratio of two adjacent steps, for example the i th and i C 1th step, then we
find:

C Ji

C JiC1
D

1=ki
Qn
jDi qj

1=kiC1
Qn
jDiC1 qj

D
kiC1

ki
qi

Since qi D ki=k�i

C Ji

C JiC1
D
kiC1

ki

ki

k�i
D
kiC1

k�i

Since all the forward rate constants are equal and all the reverse rate con-
stants are equal, the ratio kiC1=k�i must equal the equilibrium constant,
q, therefore

C Ji

C JiC1
D q
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That is the ratio of two adjacent control coefficients is equal to the equi-
librium constant. Given that we assumed that q > 1, then it must be true
that C Ji > C JiC1, that is earlier steps will have more flux control. This
pattern applies across the entire pathway such that steps near the beginning
of a pathway will have more control than steps near the end. We will call
this effect front loading and gives some credence to the traditional idea
that the first or committed step is the most important step in a pathway.
However, front loading only applies to unregulated pathways, the moment
we add regulation to the pathway this picture changes. We will consider
front loading again in a later section.

Another way to look at a linear pathway is via the mass-action ratio:

� D
Si

Si�1

where the species concentrations are measured at steady state. We define
the disequilibrium ratio, � to be equal to:

� D
�

Keq

If a step is near equilibrium, then � ' 1 whereas if a step is far from
equilibrium then �� 1.

Consider the following linear pathway, whereXo andX1 are fixed species:

v1 v2 v3 v4

"1 "2 "3 "4 "5 "6
Xo

- S1
- S2

- S3
- X4

The elasticities have been labeled 1 to 6, for example "1 represents "v1

S1
, "2

represents "v2

S1
etc. Considering the connectivity theorem for each metabo-

lite, the ratios of all the flux control coefficients can be shown to be:

C J1 W C
J
2 W C

J
3 W C

J
4 D

1 W �
"1
"2
W �
"1
"2

�
�
"3
"4

�
W �
"1
"2

�
�
"3
"4

��
�
"5
"6

�
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or for a pathway of arbitrary length, the nth term will equal:

n�1Y
iD1

 
�
"i
"iC1

!

If we assume that the enzymes are operating below saturation so that they
are governed by the rate law, vi D Vmi=Kmi .Si�1 � Si=Keqi /, then
we can replace the substrate elasticities by 1=.1 � �i / and the product
elasticities by ��i=.1� �i /. If we do these substitutions, the ratios of flux
control coefficients become:

C J1 W C
J
2 W C

J
3 W C

J
4 D

.1 � �1/ W �1.1 � �2/ W �1�2.1 � �3/ W �1�2�3.1 � �4/ (9.6)

or for an arbitrary length pathway, the nth term is equal to: 
n�1Y
iD1

�i

!
.1 � �n/ (9.7)

This is an important result, because by just knowing the equilibrium con-
stants and the concentrations of the intermediate pools it is possible to ob-
tain an idea of the relative strengths of the flux control coefficients across
the pathway.

Irreversible Steps: We can draw some interesting conclusions from rela-
tion 9.7. Let us make one of the steps irreversible, say step i , so that the
disequilibrium ratio for that step is zero, (�i D 0). We can see that since
�i appears as a multiplier in the terms down-stream of the irreversible step,
all the flux control coefficients for steps beyond will be zero. Thus steps
beyond an irreversible reaction have no control over the flux (This also as-
sumes no product inhibition). However, steps up-stream of the irreversible
step may still have control. Therefore, provided the irreversible step is not
the first step of the pathway, an irreversible step will not necessarily carry
a control coefficient of one.
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In a linear pathway governed by linear kinetics and without the pres-
ence of regulatory interactions, all steps downstream of an irreversible
step, (�i D 0), have no flux control.

Although this result was derived assuming linear kinetics, the result is
more general and applies equally to steps governed by non-linear Michaelis-
Menten kinetic laws or steps that show cooperativity. The more general
result will be shown in a later section.

It is fairly easy to understand why steps beyond an irreversible step have
not control. Imagine a perturbation in an enzyme activity at a step down-
stream of an irreversible step. This perturbation will result in changes in
metabolites concentration upstream of the perturbed step. However, a per-
turbation in the concentration of the product of the irreversible step will
by definition have no effect on the reaction rate of the irreversible step.
This also means that reactions rates of all reaction steps upstream of the
irreversible also remain unchanged. This means that it is impossible for
downstream perturbations to change the overall flux through the pathway.
In the extreme case where the first step is irreversible, the only step that
has any influence on the pathway flux is the first step. All other steps have
no influence. This means that the flux control coefficient for the first step
will one and all downstream steps zero.

Steps close to Equilibrium: If any of the steps is near equilibrium then the
disequilibrium ratio for that step will be nearly equal to one. i.e. for step
i close to equilibrium, �i � 1. Under these conditions, the term, .1 � �i /
will equal approximately zero and therefore the flux control coefficient for
that step will also be near zero. In addition, steps other than step i , act as
if step i is not part of the pathway and the pathway appears shortened.

In a linear pathway governed by linear kinetics and without regulation,
any step that is very close to equilibrium will have a flux control coeffi-
cient close to zero.

It is possible to show that the disequilibrium ratio, � is equal to the ratio of
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the reverse and forward rates for a given reaction:

� D
vr

vf

Since the forward rate will always be greater than the reverse rate for a
pathway showing a positive net rate, the disequilibrium ratio will always
be less than one:

� � 1

Because � is always less than one, the tendency is for flux control to be
higher near the front of the pathway since downstream steps have greater
multiples of � values that are less than one (See later Section on front
loading 9.4).

Relaxation Times

For a simple decay process the half-life is given by ln 2=k1 where k1 is the
rate constant for the process. The term 1=k1 is often called the relaxation
time and gives an idea of how fast the process changes. For a reversible
system such as:

A
 B

where the initial concentration of A D Ao and for B is zero, the change in
the concentration of A as a function of time is given by:

A D Aoe
�t.k1Ck�1/

where k1 and k�1 are the forward and reverse rate contacts respectively.
The term .k1Ck�1/ is analogous to the half-life for the simple decay pro-
cess and by analogy, the reciprocal of .k1 C k�1/ is called the relaxation
time, usually denoted by � :

� D
1

.k1 C k�1/

Returning to the linear pathway 9.1, let us assume that all the equilibrium
constants are equal to one, qi D 1. This means that the forward and reverse
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rate constants for each reaction are equal. Applying these assumptions to
the flux control equation 9.5 we find that:

C Ji D

1

ki
nX

jD1

1

kj

and noting that since ki D k�1, then � D 1=.ki C ki�1/ D 1=.2ki / we
finally obtain:

C Ji D
�i

�1 C : : :C �n

This relation shows how a given flux control coefficient depends on the
relaxation time of the particular step relative the sum of all the relaxation
times. That is the higher the relaxation time the larger the flux control.
This result relates to the previous section where steps close to equilibrium
tended to have small flux control coefficients. Steps close to equilibrium
will necessarily have small relaxation times.

Although the results shown in this section and the pervious tell us that
steps close to equilibrium will tend to have small flux control coefficients
we must be careful in this assertion. In all the equations that predict the
values for the flux control coefficients, the one common theme is that no
step can be considered in isolation. Thus although a step may be close to
equilibrium, this observation must be considered in the context of all the
others.

9.3 NonLinear Kinetics

The previous examples used linear mass-action kinetics for the individual
steps. What happens if we replace linear mass-action kinetics with non-
linear enzymatic rate laws? In such situations we are unable to generate
analytical solutions for the flux, as in equation 9.4 and since we cannot
derive flux expression we also cannot generate sensitivity equations such
as 9.5. Instead we must use the method describe in section 6.7, that is de-
rive the control coefficients in terms of the elasticities. One way to derive
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the control coefficients is to use the summation and connectivity theorems.
Section 6.7 derived the equations for a two step pathway:

C JE1
D

"2S

"2S � "
1
S

C JE2
D �

"1S

"2S � "
1
S

CSE1
D

1

"2S � "
1
S

CSE2
D �

1

"2S � "
1
S

Using these equations we can look at some simple extreme behaviors. For
example, let us assume that the first step is completely insensitive to its
product, S, then "1S D 0. In this case, the control coefficients reduce to:

C JE1
D 1

C JE2
D 0

That is all the control (or sensitivity) is on the first step. This situation
represents the classic rate-limiting step. The flux through the pathway is
completely dependent on the first step. Under these conditions, no other
step in the pathway can affect the flux. The effect is however dependent on
the complete insensitivity of the first step to its product. Such a situation is
likely to be rare in real pathways. In fact the classic rate limiting step has
almost never been observed experimentally. Instead, a range of “limiting-
ness” is observed, with some steps having more “limitingness” (control)
than others. We can shift control off the first step by increasing the product
inhibition.

What happens if the first step is near equilibrium? In this situation, the "11
will approach�1 (See Figure 5.4) so that the first step hardly has any flux
control and all the control is on the second step.

Control Coefficients for a Three Step Pathway

What about a three step pathway:

Xo
v1
�! S1

v2
�! S2

v3
�! X1 (9.8)
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The flux control coefficient summation theorem is given by:

C JE1
C C JE2

C C JE3
D 1

Given that we have two species concentrations, S1 and S2, we have two
connectivity theorems:

C JE1
"
v1

S1
C C JE2

"
v2

S1
D 0

C JE2
"
v2

S2
C C JE3

"
v3

S2
D 0

These three equations can be combined to give expressions that relate the
flux control coefficients in terms of the elasticities, thus:

C JE1
D

"21"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C JE2
D �

"11"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C JE3
D

"11"
2
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

The first thing to note from these equations is that if the first step is product
insensitive, that is "11 D 0 then C JE1

D 1 and C JE2
and C JE3

are zero.
As with the two step example, if any of the steps is close to equilibrium
(compared to the other two), its flux control coefficient will be close to
zero. For example, if the second step is close to equilibrium, that is "21 !
1 and "22 ! �1, the C JE2

! 0.

If the first step of the pathway is product insensitive, then flux control
resides exclusively on the first step. All other steps have no influence
on the flux through the pathway.

Let us consider some realistic values for the elasticities. Let us assume
that each enzyme experiences a small amount of product inhibition, let
us say that each product elasticity is equal to -0.1, that is "11 and "22. Let
us also assume that the substrate levels are roughly at the Km for each
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enzyme. This means that each substrate elasticity will be 0.5, this includes
"21 and "32. With these values we can estimate the flux control coefficients,
shown in Table 9.1. Flux control is clearly biased towards the start of the
pathway but some control is found in steps downstream of the first step.
Flux control that is biased towards the front of the pathway is called front-
loading, a topic we will discuss later in the chapter.

Step Flux Control Coefficient

J1 0.9
J2 0.09
J3 0.009

Table 9.1 Distribution of flux control assuming weak product inhibition
and substrate levels at the enzyme’s Km.

What happens if all three steps are close to equilibrium? At first glance
it might seem that no step has flux control because we know from the
previously results that steps close to equilibrium have little ability to con-
trol flux. However, every system must obey the flux summation theorem
where all flux control coefficients sum to one. The division of control in
a pathway were all steps are close to equilibrium is instead decided by the
relative degree of equilibrium between the each step.

It is possible for steps close to equilibrium to have significant flux con-
trol depending on the context of the reaction.

Concentration Control Coefficients

To compute the concentration control coefficients we need a different set
of theorems. There are two sets of concentration control coefficients, one
with respect to S1 and another with respect to S2. For example if we were
to consider the control coefficients with respect to S2 we would use the
following summation theorem:

C
S2

E1
C C

S2

E2
C C

S2

E3
D 0
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and the two connectivity theorems:

C
S2

E2
"22 C C

S2

E3
"32 D �1

C
S2

E1
"11 C C

S2

E2
"31 D 0

Solving for CS2

E1
; C

S2

E2
and CS2

E3
yields:

C
S2

E1
D

"21

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C
S2

E2
D

�"11

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C
S2

E3
D

"11 � "
2
1

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

Note that the denominator is positive and the numerators for CS2

E1
and CS2

E2

are positive indicating that increases in E1 or E2 result in increases in S2.
In contrast the numerator for CS2

E3
is net negative indicating that increases

in E3 result in decreases in S2. We can apply similar reasoning to derive
the concentration control coefficients with respect to S1:

C
S1

E1
D

"32 � "
2
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C
S1

E2
D

�"32

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C
S1

E3
D

"22

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

In a linear pathway where increases in substrate increase the reaction
rate and increases in product decrease the reaction rate, increases in
activity of a given enzyme, will result in all species down stream of the
enzyme to increase and all species upstream of the enzyme to decrease.
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Let us estimate the concentration control coefficients using some realistic
values for the elasticities. Let us assume that each enzyme experiences a
small amount of product inhibition, let us say that each product elasticity is
equal to 0.1, that is "11 and "22. Let us also assume that the substrate levels
are roughly at the Km for each enzyme. This means that each substrate
elasticity will be 0.5, this includes "21 and "32. Table 9.2 shows the results
of the calculations.

Step C
S1

i C
S2

i

E1 1.982 1.802
E2 -1.802 0.180
E3 -0.180 -1.982

Table 9.2 Distribution of concentration control assuming weak product
inhibition and substrate levels at the enzyme’s Km.

Note how increases in enzymes downstream of a metabolite result in the
metabolite decreasing in concentration (negative coefficient) while changes
in enzymes upstream of a metabolite result in increases in the metabolite.

Another important observation is that reactions close to equilibrium have
little influence over the species concentrations. Consider the middle reac-
tion v2. If v2 is close to equilibrium then its substrate elasticity, "21 � 0

and the product elasticity, "22 � 0. Under these conditions we see that
C
S1

E2
and CS2

E2
tend to zero because the term "21 or "22 only appear in the

denominator.

Reaction steps which are close to equilibrium have little influence over
species concentrations in a linear pathway.

Heinrich and Shuster in their book The Regulation of Cellular System [34]
also showed it is possible to express the concentration control coefficients
in terms of the flux control coefficients in a linear pathway. They showed
by application of the connectivity and summation theorems that:
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For steps at or before i , that is 1 � j � i :

C
Si

j D
C Jj

C JiC1"
iC1
i

nC1X
kDiC1

C Jk

For steps downstream of i , that is i C 1 � j � nC 1:

C
Si

j D
C Jj

C Ji "
i C i

JX
kD1

C Jk

What both equations tell is us that the value for a concentration control
coefficient at a step i is proportional to the flux control coefficient at step
i . Therefore if flux control at a particular step is small then the ability of
the same step to control concentration is also diminished. Given that the
denominator contains elasticity terms, a low flux control coefficient isn’t a
sufficient criterion for low concentration flux control.

Matrix Method

An examination of the theorems that were used to derive both the flux and
concentration control coefficients reveals that we can recast the theorems
in matrix form as follows:26664

C J1 C J2 C J3

C
S1

1 C
S1

2 C
S1

3

C
S2

1 C
S2

2 C
S2

3

37775
2664
1 �"11 0

1 �"21 �"
2
2

1 0 �"32

3775 D
2664
1 0 0

0 1 0

0 0 1

3775 (9.9)

For example, the first row of the first matrix multiplied by the first column
of the elasticity matrix yields the flux summation theorem. It is a simple
matter to extend the matrix to any size linear pathway by following the
pattern. For example a four step pathway is represented by:26666664
C J1 C J2 C J3 C J4

C
S1

1 C
S1

2 C
S1

3 C
S1

4

C
S2

1 C
S2

2 C
S2

3 C
S2

4

C
S3

1 C
S3

2 C
S3

3 C
S3

4

37777775

2666664
1 �"11 0 0

1 �"21 �"
2
2 0

1 0 �"32 �"
3
3

1 0 0 �"43

3777775 D
2666664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3777775
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One advantage of writing the equations in matrix form is that it makes it
easy to evaluate the control coefficients by inverting the elasticity matrix.
For example, if a three step linear pathway has the following elasticities:2664

1 0:6 0

1 �1:2 0:2

1 0 �0:5

3775
Then the control coefficient matrix is given by:2664

1 0:6 0

1 �1:2 0:2

1 0 �0:5

3775
�1

D

264 0:588 0:294 0:118

0:686 �0:49 �0:196

1:176 0:588 �1:765

375
Note how the top row of values sum to one reflecting the flux summation
theorem and the second and third rows sum to zero corresponding to the
concentration summation theorem.

9.4 Front Loading

In a linear pathway with linear reversible kinetics on each step, given two
adjacent flux control coefficients, the upstream coefficient will always be
equal or larger than the downstream coefficient, that is for the i th step the
following is true:

C Ji � C
J
iC1

This means that in a linear pathway control will be concentrated upstream.
To understand why this should be the case we must consider the elasticities
and control equations for a linear pathway.

Using the flux summation and connectivity theorems it is straight forward
to derive the flux control equations. For example for the three step path-
way:

Xo
v1

S1
v2

S2
v3

X1
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one can derive the following flux control coefficient equations:

C JE1
D "21"

3
2=D

C JE2
D �"11"

3
2=D

C JE3
D "11"

2
2=D

where D the denominator is given by:

D D "21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

It is possible to do this for pathways with additional steps from which a
clear pattern emerges in the equations. For a pathway with n steps where
n is even, we have the following equations:

C J1 D "21 "
3
2 "
4
3 "
5
4 � � � "

nC1
n =D

:::

C Jm D

nY
kDm

"kC1
k

1Y
kDm�1

"kk=D

:::

C Jn D "11 "
2
2 "
3
3 "
4
4 � � � "

nC1
nC1=D

If we look carefully at C J1 we see that the numerator is the product of all
the substrate elasticities. This implies that a perturbation inE1 ‘hops’ from
one enzyme to the next until it reaches the end of the pathway. Conversely,
the control coefficient of the last enzyme includes all the product elastic-
ities, that is the perturbation ‘hops’ from one enzyme to the next until it
reaches the beginning of the pathway.

If we looked at any intermediate enzyme step we would find two groups of
elasticities, one group representing the perturbation traveling downstream
via the substrate elasticities and the other representing the perturbation
traveling upstream via product elasticities.



240 CHAPTER 9. LINEAR PATHWAYS

We must now recall that given a reversible mass-action rate law, such as
k1S � k2P , the elasticities are given by:

"vS D
1

1 � �

"vP D �
�

1 � �

From these equations it follows that "vS C "
v
P D 1, that is:

k "vS k � k "
v
P k

That is the absolute value of the substrate elasticity is always greater than
the product elasticity. Given that an upstream enzyme will have more sub-
strate elasticities than product elasticities, it follows that the numerator
will be larger when compared to an enzyme further downstream which
will have more of the small value product elasticities. What this means is
that perturbations at a downstream enzyme will be attenuated compared to
a similar perturbation at an upstream step. Hence the control coefficients
upstream will on average be larger.

The origins of the asymmetry between the substrate and product elastic-
ities is a thermodynamic one. If the thermodynamic gradient were to be
reversed so that the pathway flux traveled ‘upstream’, the elasticity val-
ues exchange so that now the front loading occurs downstream, although
‘downstream’ is now ‘upstream’ because the flux has reversed.

In a linear pathway governed by linear kinetics and without regulation,
flux control is biased towards the start of the pathway, an effect called
front loading.

9.5 Optimal Allocation of Protein

Protein synthesis constitutes a significant drain on resources in a cell. For
example, protein synthesis consumes approximately 7.5 ATP equivalents
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per peptide bond compared to one glucose molecule yielding roughly 36
molecules of ATP. If the average number of peptide bonds in a protein is
300, then it takes roughly 62 molecules of glucose to make just one pro-
tein molecule, not including the cost of the amino acids. In some cultured
mammalian cells, protein synthesis consumes 35% to 50% of all ATP pro-
duction. In addition to the energetic cost, proteins also occupy a significant
proportion of cell volume at around 20 to 30% of the cell. This high level
approaches the solubility limit of proteins and also limits the diffusion of
other smaller molecules. These and other issues effectively put an up-
per limit on the total amount of protein in a cell. It would seem logical
to assume that the distribution of a fixed amount of protein is not evenly
distributed because some processes may requires higher levels of protein
compared to others suggesting competition for protein between different
processes. Such distributions are likely to be under evolutionary selection
so that there exists an optimal allocation of the fixed amount of protein
to all process in the cell. The optimal allocation is also likely to shift as
environmental conditions change.

In this section we will consider what is the optimal allocation of a fixed
amount of protein in a metabolic pathway such that the steady state path-
way flux is maximized.

Let us consider a very simple two step metabolic scheme shown below:

Xo ! S1 ! X1

Assume that the first step is catalyzed by an enzyme E1 and the second
step by an enzyme E2. Let us reduce the amount of enzyme E1 by a small
amount, ıE1, such that the pathway flux is reduced by an amount ıJ . We
can now increase the level ofE2 by ıE2 so that the pathway flux is returned
to the original state. The net change in protein is therefore ıE1 C ıE2.

Let us also assume that the levels of E1 and E2 had previously being ad-
justed so that for a given flux, the total E1 C E2 was at a minimum, that
is the distribution of protein was optimal. In other words it would not be
possible to reduce the total amount of protein and at the same time adjust
the protein distribution such that the flux is unchanged. Then it must be
true that:

ıE1 C ıE2 D 0
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Given these changes in Ei and the fact that the flux does not change, we
can write the following:

C JE1

ıE1

E1
C C JE2

ıE2

E2
D
ıJ

J
D 0

Submitting ıE1 C ıE2 D 0 into the above relation yields:

C JE1

1

E1
D C JE2

1

E2

We can now invoke the flux summation theorem to eliminate one of the
control coefficients to yield:

C JE1

1

E1
D

�
1 � C JE1

� 1

E2

Rearranging this to solve for C JE1
yields:

C JE1
D

E1

E1 CE2

This result can be generalized to any length pathway so that for a given
total amount of protein and a given flux, the optimal allocation of protein
at a particular step, i , is given by:

C JEi
D

EiP
Ei

Further Reading

1. Heinrich and Rapoport

Exercises

1. Show that summing all the C Ji coefficients in equation 9.5 equals
one.
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2. Prove equation 9.6 in the main text.

3. In general if a given enzymatic step is very close to equilibrium,
what can be say about the flux control coefficient of that step?

4. In a four step pathway each step is catalyzed by a reversible Michaelis-
Menten rate law. In addition each step is close to equilibrium. Does
this mean that no step in the pathway can control flux? Explain your
answer.

5. An unregulated linear pathway is made of up eight enzymatic re-
action steps, all steps are product sensitive except for the fifth step.
What can you say about the distribution of flux control in this path-
way?

6. Show that the ratio of flux control coefficients in a linear pathway,
such as 9.1, where each reaction is governed by equation 9.3 is given
by:

C J1 W C
J
2 W C

J
3 W : : : D

.Xo � S1=q1/ W .S1 � S2=q2/=q1 W .S2 � S3=q3/=.q1q2/ W : : :

7. What is front-loading?

8. Metabolic engineers wish to increase the production of an impor-
tant commodity that is synthesized by a five step metabolic pathway
(9.10).

Xo ! S1 ! S2 ! S3 ! S4 ! X1 (9.10)

The pathway has no known negative feedback loops. In order to
obtain a rough idea of the distribution of control in this pathway,
the engineers obtain values for all the standard �Gos and obtain
estimates for the concentrations of all the metabolite pools in the
pathway. �Gos were obtained at 25oC.

The table below shows the data they obtained:
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Step �Go Metabolite Concentration

1 -12 kJ mol�1 Xo 0.9 mM
2 -2 kJ mol�1 S1 0.2 mM
3 +1 kJ mol�1 S2 0.05 mM
4 -5 kJ mol�1 S3 0.45 mM
5 -4 kJ mol�1 S4 0.15 mM

X1 0.01 mM

From the data they collected, what advice would you give concern-
ing which step(s) are worth increasing in activity in order to increase
the flux through the pathway?

9. Using a four step linear pathway where each reaction uses reversible
mass-action kinetics (Equation 9.3), generate 10,000 variations of
this pathway. Do this by setting the equilibrium constants to fixed
values of q1 D 2I q2 D 4I q3 D 8I q4 D 16 and then randomiz-
ing the forward rate constant between 0 and 1.0. For each pathway
variant compute the flux control coefficients. This can be done by
modulating the rate constant for each step and observing the effect
on the pathway flux or by inserting the relevant values into equa-
tion 9.5. From the 10,000 variants, compute the distribution of flux
control coefficients in the pathway. Explain the distribution of con-
trol coefficients you observe.

10. Derive the concentration control coefficient equations for a three
step pathway.

11. It is known that in a given linear pathway the distribution of protein
across the enzymes is optimized for flux. In this situation, what it
the easiest way to estimate all the flux control coefficients?



10
Negative Feedback

10.1 Historical Background

Feedback is widespread in biochemical networks and physiological sys-
tems in general. Some form of feedback permeates almost every known
biological process. On the face of it, feedback is a simple process that in-
volves sending a portion of the output to the input. If the portion sent back
reduces the input then the feedback is called negative feedback otherwise
it is called positive feedback.

Water Clocks

The concept of feedback control goes back at least as far as the Ancient
Greeks. Of some concern to the ancient Greeks was the need for accurate
time keeping. In about 270 BC the Greek Ktesibios invented a float regula-
tor for a water clock. The role of the regulator was to keep the water level
in a tank at a constant depth. This constant depth yielded a constant flow

245
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of water through a tube at the bottom of the tank which filled a second tank
at a constant rate. The level of water in the second tank thus depended on
time elapsed.

Philon of Byzantium in 250 BC is known to have kept a constant level of
oil in a lamp using a float regulator and in the first century AD Heron of
Alexandria experimented with float regulators for water clocks. Philon and
particularly Heron (13 AD) have left us with an extensive book (Pneumat-
ica) detailing many amusing water devices that employed negative feed-
back.

Governors

It wasn’t until the industrial revolution that feedback control, or devices
for automatic control, became economically important. Probably the most
famous modern device that employed negative feedback was the governor.
Thomas Mead in 1787 took out a patent on a device that could regulate
the speed of windmill sails. His idea was to measure the speed of the mill
by the centrifugal motion of a revolving pendulum and use this to regulate
the position of the sail. Very shortly afterwards in early 1788, James Watt
is told of this device in a letter from his partner, Matthew Boulton. Watt
recognizes the utility of the governor as a device to regulate the new steam
engines that were rapidly becoming an important source of new power for
the industrial revolution.

The device employed two pivoted rotating flyballs which were flung out-
ward by centrifugal force. As the speed of rotation increased, the fly-
weights swung further out and up, operating a steam flow throttling valve
which slowed the engine down. Thus, a constant speed was achieved au-
tomatically. So popular was this innovation that by 1868 it is estimated
that 75,000 governors (A History of Control Engineering, 1800-1930 By
Stuart Bennett, 1979) were in operation in England. Many similar devices
were subsequently invented to control a wide range of processes, including
water wheels, telescope drives and temperature and pressure control.

The description of the governor illustrates the operational characteristics
of negative feedback. The output of the device, in this case the steam
engine speed, is Ťfed backŤ to control the rate of steam entering the steam
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Figure 10.1 A typical governor from J. Farley, A Treatise on the Steam
Engine: Historical, Practical, and Descriptive (London: Longman, Rees,
Orme, Brown, and Green, 1827, p436

engine and thus influence the engine speed.

During this period devices for automatic control were designed through
trial and error and little theory existed to understand the limits and behavior
of feedback control systems. One of the difficulties with feedback control
is the potential for instability. As the governor became more widespread,
improvements were made in manufacturing mechanical devices which re-
duced friction. As a result engineers began to notice a phenomena they
termed hunting. This was where after a change in engine load, the gov-
ernor would begin to ‘hunt’ in an oscillatory fashion for the new stream
rate that would satisfy the load. This effect caused considerable problems
with maintaining a stable engine speed and resulted in James Maxwell and
independently Vyshnegradskii, undertaking the first theoretical analysis of
a negative feedback system.

Until the 20th century, feedback control was generally used as a means
to achieve automatic control, that is to ensure that a variable, such as a
temperature or a pressure was maintained at some set value. However, an
entirely new application for feedback control was about to emerge with the
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advent of electronics in the early part of the 20th century.

Feedback Amplifiers

Amplification is one of the most fundamental tasks one can demand of an
electrical circuit. One of the challenges facing engineers in the 1920’s was
how to design amplifiers whose performance was robust with respect to
the internal parameters of the system and which could overcome inherent
nonlinearities in the implementation. This problem was especially critical
to the effort to implement long distance telephone lines across the USA.

These difficulties were overcome by the introduction of the feedback am-
plifier, designed in 1927 by Harold S. Black (Mindell, 2000), who was an
engineer for Western Electric (the forerunner of Bell Labs). The basic idea
was to introduce a negative feedback loop from the output of the amplifier
to its input. At first sight, the addition of negative feedback to an am-
plifier might seem counterproductive. Indeed Black had to contend with
just such opinions when introducing the concept. His director at Western
Electric dissuaded him from following up on the idea and his patent appli-
cations were at first dismissed. In his own words, “our patent application
was treated in the same manner as one for a perpetual motion machine”
(Black, 1977).

While Black’s detractors were correct in insisting that the negative feed-
back would reduce the gain of the amplifier, they failed to appreciate his
key insight that the reduction in gain is accompanied by increased robust-
ness of the amplifier and improved fidelity of signal transfer.

Unlike the steam engine governor which is used to stabilize some system
variable, negative feedback in amplifiers is used to accurately track an ex-
ternal signal. These two applications highlight the two main ways in which
negative feedback can be used, namely as a regulator or as a servomech-
anism.

As a regulator, negative feedback is used to maintain a controlled output
at some constant desired level, whereas a servomechanism will slavishly
track a reference input. We can see both applications at work in the eye.
On the one hand there is the need to control the level of light entering the
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pupil. The diameter of the pupil is controlled by two antagonistic muscles.
If the external light intensity increases, the muscles respond by reducing
the pupil diameter, whereas the muscles increase the pupil diameter if the
light intensity falls. The pupil reflex serves as an example of negative
feedback using in a regulator mode. In contrast tracking an object involves
maintaining the eyeball fixed on the object. In this mode the eye functions
as a servomechanism.

Both regulator and servomechanism are implemented using the same op-
erational mechanism. Figure 10.2 shows a generic negative feedback cir-
cuit. On the left of the figure can be found the input, sometimes terms the
desired value or more often the set point. If the circuit is used as a ser-
vomechanism then the output tracks the set point. As the set point changes
the output follows. If the circuit is used as a regulator or homeostatic de-
vice then the set point is held constant and the output is maintained at or
near the set point even in the face of disturbances.

The central mechanism in the feedback circuit is the generation of the error
signal, that is the difference between the desired output (set point) and the
actual output. The error is fed into a controller (often something that sim-
ply amplifies the error) which is used to increase or decrease the process.
For example, if a disturbance on the process block reduces the output, then
the feedback operates by generating a positive error, this in turn increases
the process and restores the original drop in the output.

ProcessController

Feedback

Set Point Output
Error

Disturbances

Figure 10.2 Generic structure of a negative feedback system.
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10.2 Simple Quantitative Analysis

The figure of the generic negative feedback circuit (Figure 10.2) is highly
stylized which makes it difficult to identify the various component in a
real biological system. In addition, biological system are invariably more
complex with multiply nested feedback loops and multiple inputs and out-
puts. If it remarkable that even after 50 or 60 years of research, the role of
many of the feedback systems in biochemical networks take is still highly
speculative.

In the remainder of this section we will consider some basic properties
of negative feedback systems. The simplest way to think about feedback
quantitatively is by reference to Figure 10.3.

yi A

K

yo
e

Figure 10.3 Generic structure of a negative feedback system.

We will assume some very simple rules that govern the flow of information
in this feedback system. For example, the output signal, yo will be given
by the process A multiplied by the error, e. The feedback signal will be
assumed to be proportional to yo, that is Kyo. Finally, the error signal, e
will be given by the difference between the set point, yi and the feedback
signal, Kyo (Figure 10.4).

yi A

K

y  = Aeo

Kyo

e = y -Kyi o

Figure 10.4 Generic structure of a negative feedback system.
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From these simple relations it is straightforward to show that:

yo D
Ayi

1C AK
or more simply yo D Gyi (10.1)

G is called the gain of the feedback loop, often called the closed loop gain.
Gain is a term that is commonly used in control theory and refers to the
scalar change between an input and output. Thus a gain of 2 simply means
that a given output will be twice the input. In addition to the close loop
gain, engineers also define two other gain factors, the open loop gain and
the loop gain. The open loop gain is simply the gain from process, A,
alone. It is the gain one would achieve if the feedback loop were absent.
The loop gain is the gain from the feedback and process A combined,
AK. The loop gain is a significant quantity when discussing the stability
of feedback circuits. Figure 10.4 illustrates the different types of gain in a
feedback circuit.

A

K

Closed Loop Gain

A

K

A

K

Open Loop Gain Loop Gain

Figure 10.5 Generic structure of a negative feedback system.

We can use equation 10.1 to discover some of the basic properties of a neg-
ative feedback circuit. The first thing to note is that as the loop gain, AK,
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increases, the system behavior becomes more dependent on the feedback
loop and less dependent on the rest of the system:

when AK � 1 then G '
A

AK
D

1

K

This apparently innocent effect has significant repercussions on other as-
pects of the circuit. To begin with, as the system becomes less important
on A, so does variation in the properties of A. Feedback makes the per-
formance of the system independent of any variation in A. Such variation
might include noise or variation as a result of the manufacturing process or
in the case of biological systems, genetic variation. To be more precise we
can compute the sensitivity of the gain G with respect to variation in A.

@G

@A
D

@

@A

A

1C AK
D

1

.1C AK/2
:

If we consider the relative sensitivity we find:

@G

@A

A

G
D

1

1C AK

In addition to resistance to parameter variation, feedback also confers a re-
sistance to disturbances in the output. Suppose that a nonzero disturbance
d affects the output. The system behavior is then described by

y D Ae � d e D u �Ky:

Eliminating e, we find

y D
Au � d

1C AK
:

The sensitivity of the output to the disturbance is then

@y

@d
D �

1

1C AK
:
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The sensitivity decreases as the loop gain AK is increased. In practical
terms, this means that the imposition of a load on the output, for example
a current drain in an electronic circuit, protein sequestration on a signal-
ing network or increased demand for an amino acid will have less of an
effect on the circuit as the feedback strength increases. In electronics this
property essentially modularizes the network into functional modules.

Last but not least, feedback also improves the fidelity of the response. That
is, for a given change in the input, a system with feedback is more likely
to faithfully reproduce the input at the output that a circuit without feed-
back. An ability to faithfully reproduce signals is critical in electronics
communications and in fact it was this need that was the inspiration for the
development of negative feedback in the early electronics industry.

Consider now the case where the amplifier A is nonlinear. For example a
cascade pathway exhibiting a sigmoid response. Then the behavior of the
system G (now also nonlinear) is described by

G.yi / D yo D A.e/ e D yi �Kyo D yi �KG.yi /:

Differentiating we find

G0.yi / D A
0.yi /

de

dyi

de

dyi
D 1 �KG0.yi /:

Eliminating de
dyi

, we find

G0.yi / D
A0.yi /

1C A0.yi /K
:

We find then, that if A0.yi /K is large (A0.yi /K � 1), then

G0.yi / �
1

K
;

so, in particular, G is approximately linear. In this case, the feedback
compensates for the nonlinearities A.�/ and the system response is not dis-
torted. (Another feature of this analysis is that the slope of G.�/ is less
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than that of A.�/, i.e. the response is “stretched out”. For instance, if A.�/
is saturated by inputs above and below a certain “active range”, then G.�/
will exhibit the same saturation, but with a broader active range.)

A natural objection to the implementation of feedback as described above
is that the system sensitivity is not actually reduced, but rather is shifted so
that the response is more sensitive to the feedback K and less sensitive to
the amplifierA. However, in each of the cases described above, we see that
it is the nature of the loop gain AK (and not just the feedback K) which
determines the extent to which the feedback affects the nature of the sys-
tem. This suggests an obvious strategy. By designing a system which has
a small “clean” feedback gain and a large “sloppy” amplifier, one ensures
that the loop gain is large and the behavior of the system is satisfactory. En-
gineers employ precisely this strategy in the design of electrical feedback
amplifiers, regularly making use of amplifiers with gains several orders
of magnitude larger than the feedback gain (and the gain of the resulting
system).

1. Amplification of signal.

2. Robustness to internal component variation.

3. High fidelity of signal transfer.

4. Low output impedance so that the load does not affect the perfor-
mance of the circuit.

These are the main advantages of negative feedback but as we will see in a
later section on frequency response, feedback can confer additional useful
features.

10.3 Negative Feedback in Biochemical Systems

It was Umbarger (Umbarger, 1956) and Yates and Pardee (Yates & Pardee,
1956) who discovered feedback inhibition in the isoleucine biosynthesis
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pathway and the inhibition of aspartate transcarbamylase in E. coli. It
wasn’t long afterwards that some researchers began to investigate such
feedback systems mathematically. Probably the most extensive mathemat-
ical analysis of biochemical feedback was conducted by Savageau (Sav-
ageau, 1972; Savageau, 1974; Savageau, 1976) and Burns and Kacser
(Burns, 1971; Kacser & Burns, 1973) and Othmer and Tyson (Othmer,
1976; Tyson & Othmer, 1978) in the 1970s and Dibrov et. al. in the early
1980s (Dibrov et al., 1982). More recently, Cinquin and Demongeot have
published an interesting review on the roles of feedback in biological sys-
tems (Cinquin & Demongeot, 2002).

In the last section we considered a simple analysis of negative feedback
and its behavioral effects. The treatment was however very generic and
the question we wish to address here is how can we apply the same kind
of analysis to biochemical feedback systems? This question is harder to
answer that it seems. To begin with, biochemical systems are governed
by nonlinear rate laws not the simple linear rules we used in the previous
analysis. Secondly how do we map the generic diagram (Figure 10.2)
onto a biochemical feedback circuit (Figure 10.7), on the surface they look
similar but the initial impression is misleading.

X0 X1S1 2S S3

Figure 10.6 Simple four step pathway with negative feedback.

In order to be clear we need to identify the input (set point), output, the
feedback loop and the process block in the biochemical network Figure 10.7).

In naturally evolved systems it is sometimes difficult to identify the various
parts in a negative feedback circuit. The most difficult element to identify
is the set point. In biochemical networks the set point is embedded in the
regulated enzyme, often in the form of the half saturation constant of the
allosteric regulator.

The pathway in Figure 10.8 shows a simple negative feedback, a common
motif in many metabolic pathways. Here we see a downstream species, S2
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X0 X1S1 2S S3

OutputSet Point Feedback Process

Figure 10.7 Simple four step pathway with negative feedback.

controlling the first step in the pathway, v1. Control is often achieved using
allosteric enzymes which have distinct binding sites for the controlling
species that are separate from the main active site.

X0 X1S1 2S
v1 v2 v3

Figure 10.8 Simple three step pathway with negative feedback.

When comparing the block diagram to the biological pathway in Fig-
ure 10.8 it may not be apparent how the two representations can be matched.
It is however possible to pair each component in the block diagram to an
equivalent component in the biological pathway. Thus the output, yo in the
block diagram corresponds to the concentration of S2. The negative feed-
back component k corresponds to the interaction of S2 with the allosteric
enzyme in the first step. The set point, yi is more problematic but it is most
likely embedded in the kinetic characteristics of the allosteric enzyme. Fi-
nally the controller A is represented by the steps v1 and v2. The load on
the system is represented by the last step, v3 and other disturbances can be
assigned to v1, v2 and the input concentration, Xo.

Graphical understanding of feedback

If is possible to appreciate the effect of negative feedback using a graphical
approach. Figure 10.9 shows to plots, one with strong and the other with
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Figure 10.9 Plot of v1 and v2 versus the concentration of S for a simple
two step pathway with negative feedback. Two perturbations in k2 that
determines v2 are shown. In the left panel where the feedback is string,
changes in k2 have hardly any effect on S . On the right panel, the same
change in k2 results in a much larger change in S . This illustrates the
homeostatic property of negative feedback. Left Panel: v1 D 1=.1C S4/,
Right Panel: v1 D 1=.1C S/

weak feedback. The plots show the reaction rates v1 and v2 as a function
of the intermediate species, S for a simple two step pathway where S can
negatively feedback on to the first step. We assume that the second step
follows first-order kinetics so that the v2 is a straight line. The feedback
response curve shows a decline from high to low as S increases. For strong
feedback the decline is sheep (left plot). If we now change the rate constant
for the second step, this changes the slope of v2, this is equivalent to a
perturbation in the system. In the case of weak feedback, changes in v2
result in significant changes to S , this is because the feedback response is
shallow. In contrast, when we have strong feedback (left panel), where the
slope is very steep, any changes in v2 results in only small changes in S .
In this way we can see how strong negative feedback can buffer changes
in v2.
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Control Analysis

Just as we did earlier, we can derive the flux and concentration control
coefficients in terms of the elasticities. For convenience, we will write out
the theorems in matrix form (See equation 9.9), note the presence of the
feedback term, "12 in the matrix.26664

C J1 C J2 C J3

C
S1

1 C
S1

2 C
S1

3

C
S2

1 C
S2

2 C
S2

3

37775
2664
1 �"11 �"

1
2

1 �"21 �"
2
2

1 0 �"32

3775 D
2664
1 0 0

0 1 0

0 0 1

3775
Rearranging the matrix equation yields:26664

C J1 C J2 C J3

C
S1

1 C
S1

2 C
S1

3

C
S2

1 C
S2

2 C
S2

3

37775 D
2664
1 0 0

0 1 0

0 0 1

3775
2664
1 �"11 �"

1
2

1 �"21 �"
2
2

1 0 �"32

3775
�1

Inverting the elasticity matrix yields the following equations for the control
coefficients with and without feedback to illustrate the difference in the
results.

With Feedback Without Feedback

C JE1
D

"21"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2 � "

2
1"
1
2

C JE1
D

"21"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C JE2
D

�"11"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2 � "

2
1"
1
2

C JE2
D

�"11"
3
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

C JE3
D

"11"
2
2 � "

2
1"
1
2

"21"
3
2 � "

1
1"
3
2 C "

1

1"
2
2 � "

2
1"
1
2

C JE3
D

"11"
2
2

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2
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We can see that the addition of feedback adds a new term to the denomi-
nator and to the numerator for C JE3

. If we make the feedback elasticity, "12
larger we can see that the demand flux control coefficient tends to unity.
That is, all control moves out of the feedback loop. In terms of the steam
engine analogy, it is equivalent to being able to change the demand on the
steam engine without loss of power. This can be seen more clearly if we
look at the concentration control coefficients.

C JE3
! 1

C
S2

E3
! 0

In the list below we give the three control coefficients with respect to S2.
Looking at CS2

E3
we see that as the feedback strength is increased ("12) in

magnitude, the control coefficient tends to zero. This means that the feed-
back locks the concentration of S2 in to a very narrow range in response
to changes in demand.

C
S2

E1
D

"21

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2 � "

2
1"
1
2

C
S2

E2
D �

"11

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2 � "

2
1"
1
2

C
S2

E3
D

"11 � "
2
1

"21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2 � "

2
1"
1
2

Classically, allosteric enzymes have been considered as flux controllers.
The analysis here suggests the opposite picture. Allosteric enzymes, when
part of a negative feedback loop are very poor controllers of flux. Instead
allow distal steps to be good controllers of a pathway flux. For demand
driven systems this is a logical arrangement.

The nagging suspicion remain however that intuitively that the regulated
step must have some kind of ability to enable the system to operate in the



260 CHAPTER 10. NEGATIVE FEEDBACK

way it does. There are at least two answers to this. The first is that the
feedback elasticity will be strongly negative. For example, if the regulated
step were determined by a modified Hill like equation such as:

v D
Vmax Xo

Sn CXoCKm

where S is the feedback signal, then the elasticity of the reaction rate with
respect to the signal is given by:

"vS D
nXoKm

Km C .S=Km/n

We see that at low signal, S , the elasticity is proportional to n, the Hill
coefficient. The reaction is therefore very sensitive to changes in the signal
molecule.

The second way to answer the question is to consider the pathway with
and without the negative feedback loop. We can compare for example the
flux control coefficient on the first step with and without negative feed-
back. When we remove the negative feedback the pathway will change to
a new state where the concentrations of S1 and S2 are higher. To make the
comparison fair we should adjust the level of enzyme in the first step to
restore the levels of S1 and S2 to the values they had before the feedback
was removed. When we do this we will also automatically restore the path-
way flux to its original value. In practice this means that all the elasticities
except for the feedback elasticity are exactly in the same in both systems.
To keep the analysis simple, let us assume that the product inhibition elas-
ticities, "11 and "22 are both zero. We now take the ratio of the flux control
coefficient on the first step, C J1 without feedback to the same coefficient
with feedback, which will be denoted by nC J1 :

C J1
nC J1

D
"21"

3
2 � "

1
2"
2
1

"21"
3
2

D 1 �
"12"

2
1

"21"
3
2

D 1 �
"12

"32

Given that "12 is negative, the term, �"12="
3
2 is positive. That is:

C J1 >nC J1
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This tells us that for a negative feedback loop to be effective, the flux con-
trol coefficient in the unregulated pathway must be higher than the flux
control coefficient with feedback. In a sense the first step in the pathway
must have some degree of rate limitingness if a negative feedback is to be
effective.

10.4 Robustness and Supply/Demand

One way to look at metabolic systems is to divide them into two separate
but connected blocks, the supply block and the demand block. Negative
feedback makes this division very straight forward. Consider a factory that
make cars. Should the rate of car production be controlled by the demand
or the supply of cars? Economically the most efficient strategy is to let
demand decide how many cars to make, this ensure that excess cars do
not build up and thereby waste resources. In certain metabolism situations
the same reasoning can be used. For example the production of amino
acids would best be determined by the demand from protein synthesis.
This means that if protein synthesis slows, amino acid production should
also slow. A metabolic system that supplies amino acids should be able
to supply amino acids effectively at both high and low demand. One way
to do this is to maintain the amino acid level at a relatively constant level
independent of the demand block. Let us assume for the moment that there
is no feedback regulation in the supply/demand pathway (Figure 10.10). If
demand rises, this will result in the intermediate metabolite, P , falling. As
P falls the ability to supply the increased demand becomes more and more
difficulty. If demand falls, the flux through the pathway will fall. This
will cause the intermediate metabolite, P to rise. Since the equilibrium
constant across the supply block is likely to be large, the concentration of
P could raise to toxic high levels as the supply block approach equilibrium
at low fluxes.

Supply DemandP

Figure 10.10 A system divided into supply and demand blocks.
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The solution to avoid both problems at high and low demand is to use neg-
ative feedback (Figure 10.11). With negative feedback, high demand will
result in a decrease in the intermediate metabolite, P , which in turn will
release repression in the supply block to restore some the loss in P . Alter-
natively, at low demand, the increase in P will suppress its own production
preventing excessive production of P .

Supply DemandP

Figure 10.11 A system divided into supply and demand blocks with neg-
ative feedback.

10.5 Instability

Although negative feedback offers considerable advantages to a system,
too much feedback and delays can result instability in the form of sustained
oscillations. We will not discuss stability of negative feedback systems in
any detail in this book (See Control Theory for Bioengineers), but there
are no a number of examples of metabolic systems or metabolism sys-
tems interacting with protein networks where negative feedback appears
to cause instability and the emergence of sustained oscillations (Wester-
hoff and Hasty).

Further Reading

1. Sauro HM (2013) Control Theory for Bioengineers. Web site

Exercises

1. A regulated step via a negative feedback look has a flux control coef-
ficient of 0.9. Would you consider this system to be a well regulated
pathway? Explain your answer.



10.5. INSTABILITY 263

2. A system is driven by the supply. What could go wrong with such a
system when compared to one that is driven by demand?
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11
Branched and Cyclic Systems

11.1 Branched Pathways

Branching structures are probably one of the most common patterns in
biochemical networks. Even a pathway such as glycolysis, often depicted
as a straight chain in textbooks is in fact a highly branched pathway.

At any given branch node, where a node is a molecular species, there will
be conservation of mass. Given a node species, xi , with b branches enter-
ing the node and d branches leaving, the net rate of change in concentra-
tion of xi is:

bX
iD1

vi �

dX
jD1

vj D
dxi

dt

At steady state when dxi=dt D 0, it must also be true that:

bX
iD1

vi D

dX
jD1

vj

265



266 CHAPTER 11. BRANCHED AND CYCLIC SYSTEMS

C
J1

E1
C
J2

E1
C
J3

E1
CSE1

C
J1

E2
C
J2

E2
C
J3

E2
CSE2

C
J1

E3
C
J2

E3
C
J3

E3
CSE3

Table 11.1 Set of control coefficients for a simple branch

In this section we will investigate the control of flux through a branched
system in response to changes in enzyme activity. Let us consider the
simple branched pathway depicted in Figure 11.1.

S
J1

J2

J3

Figure 11.1 Simple branched pathway. This pathway has three different
fluxes, J1; J2, and J3 which at steady state are constrained by J1 D J2 C
J3.

In the figure, J1; J2 and J3 are the steady state fluxes. By the law of con-
servation of mass, at steady state, the fluxes in each limb will be governed
by the relationship:

J1 D J2 C J3

Given three different fluxes and one intermediate, there will be four sets of
control coefficients, one set concerned with changes in the intermediate,
S , and three sets corresponding to each of the three fluxes (Table 11.1).

For the branched system we can write a summation and a connectivity
theorem with respect to each flux. For example, with respect to J1 we can
write:

C
J1

E1
C C

J1

E2
C C

J1

E3
D 1
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and
C
J1

E1
"
v1

S C C
J1

E2
"
v2

S C C
J1

E3
"
v3

S D 0

This gives us two equations but three unknown flux control coefficients.
To solve for the C J1

Ei
we need another equation.

Let the fraction of flux through J2 be given by ˛ D J2=J1 and the fraction
of flux through J3 be 1 � ˛ D J3=J1. Let us carry out the following
thought experiment.

1. Increase the concentration of E2 by ıE2, this will cause a decrease
in S , an increase in J1 (relief of product inhibition) and a decrease
in J3.

2. Restore the change in J1 by decreasing E3 such that S is restored
to its pre-perturbation state. That at the end the thought experiment
ıS D 0.

3. Since we have not changed E1, it must be the case that ıJ1 D 0.

From this experiment we can write down the system and local equations.
The system equation is given by:

C
J1

E2

ıE2

E2
C C

J1

E3

ıE3

E3
D
ıJ1

J1
D 0

Note that the system equation only has two terms because we did not
change E1. The local equations are quite simple because ıS D 0 and
as before we assume that "vEi

D 1.

ıv2

v2
D
ıE2

E2
and

ıv3

v3
D
ıE3

E3

By substitution, the system equation can be written as:

C
J1

E2

ıv2

v2
C C

J1

E3

ıv3

v3
D 0

Since ıJ1 D 0, it must be the case the net change in flux downstream of S
must also be zero, that is ıv2Cıv3 D 0, or ıv2 D �ıv3. We can therefore
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eliminate the ıv3 term:

C
J1

E2

ıv2

v2
� C

J1

E3

ıv2

v2

v2

v3
D 0

Canceling terms we obtain:

C
J1

E2
� C

J1

E3

v2

v3
D 1

We can substitute the absolute rates, v2 and v3 with the fractional fluxes,
˛ and 1 � ˛ to give:

C
J1

E2
� C

J1

E3

˛

1 � ˛
D 0

and finally:

C
J1

E2
.1 � ˛/ � C

J1

E3
˛ D 0

This result is called the flux branch point theorem. We can derive similar
theorems with respect to J2 and J3. In each case we carry out the same
thought experiment such that the reference flux, J2 or J3 is unchanged.
The two additional theorems are given below with respect to J2 and J3.

C
J2

E1
.1 � ˛/C C

J2

E3
D 0

C
J3

E1
˛ C C

J3

E2
D 0

We can also derive using the same thought experiment branch point theo-
rems with respect to the species concentration, S . This time the systems
equation is:

CSE2

ıE2

E2
C CSE3

ıE3

E3
D
ıS

S
D 0

Substituting in the same local equations as before and noting that ıv2 D
�ıv3 we obtain after some rearrangement:

CSE2
.1 � ˛/C CSE3

˛ D 0
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This result is known as the concentration branch point theorem and as
can be seen it is very similar to the flux branch point theorem. There are
also a set of variants that correspond to the flux branch theorems for J2
and J3:

CSE1
.1 � ˛/C CSE3

D 0

CSE1
˛ C CSE2

D 0

We can write out the theorems in matrix form (See equation 9.9) using
the theorems expressed in terms of J2, this includes one summation, one
connectivity and one branch theorem:

"
C
J2

1 C
J2

2 C
J2

3

CS1 CS2 CS3

#2664
1 �"11 0

1 �"21 1 � ˛

1 �"31 1

3775 D �1 0 0

0 1 0

�

We can solve for the control coefficient matrix by rearranging:

"
C
J2

1 C
J2

2 C
J2

3

CS1 CS2 CS3

#
D

�
1 0 0

0 1 0

�2664
1 �"11 0

1 �"21 1 � ˛

1 �"31 1

3775
�1

Inverting the second matrix we can derive C J2

E2
and C J2

E3
[20]. In the fol-

lowing we have simplified the notation by setting "1 D "1S ; "2 D "2S ; and
"3 D "

3
S . The denominator, "2˛C "3.1�˛/� "1 is positive, therefore the

following equalities hold given that "1 < 0, "2 > 0 and "3 > 0:

C
J2

E1
D

"2

"2˛ C "3.1 � ˛/ � "1
> 0

C
J2

E2
D

"3.1 � ˛/ � "1

"2˛ C "3.1 � ˛/ � "1
> 0

C
J2

E3
D

�"2.1 � ˛/

"2˛ C "3.1 � ˛/ � "1
< 0
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And for the concentration control coefficients:

CSE1
D

1

"2˛ C "3.1 � ˛/ � "1
> 0

CSE2
D

�˛

"2˛ C "3.1 � ˛/ � "1
< 0

CSE3
D

�.1 � ˛/

"2˛ C "3.1 � ˛/ � "1
< 0

Referring to the concentration control coefficient first we note that CS1 is
positive while the two branch coefficients, CS2 and CS3 are negative. This
is as expected. The degree to which each of the output branches affects the
concentration is in proportion to the amount of flux carried by the branch.
This means that a branch that only carries a small amount of flux will have
little effect on the branch species concentration.

Both flux control coefficients, C J2

1 and C J2

2 are positive which we would
expect. The flux control coefficient, C J2

3 however is negative, indicating
that changes in the activity of E3 decreases the flux in the other limb, J2.
This means there is competition in each output branch for flux. If one
branch becomes more active then it can “steal” flux from the other branch.
The amount stolen will depend on the various kinetic properties of the
branch enzymes. To answer what determines the competition between the
output branches we must look at the control equations in more detail, in
particular we must look at how the distribution of control is affected by
different flux distributions and the kinetics of the branch enzymes. In the
following analysis J2 will be the flux we observe as a result of perturba-
tions to the enzymes in the branched pathway.

Most Flux Through J3

The first situation to consider is the case when the bulk of flux moves along
J3 and only a small amount goes through the upper limb J2, that is ˛ ! 0

and 1�˛ ! 1 (See Figure 11.2(b)). Let us examine how the small amount
of flux through J2 is influenced by the two branch limbs, E2 and E3.
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As ˛ ! 0 and 1 � ˛ ! 1, then:

C
J2

E2
!

"1 � "3

"1 � "3
D 1

C
J2

E3
!

"2

"1 � "3

The first thing to note is that E2 tends to acquire proportional influence
over its own flux, J2. Since J2 only carries a very small amount of flux,
any changes in E2 will have little effect on S , hence the flux through E2
is almost entirely governed by the activity of E2. Because of the flux sum-
mation theorem and the fact that C J2

E2
D 1 it means that the remaining two

coefficients must be equal and opposite in value. Since C J2

E3
is negative,

C
J2

E1
must be positive.

Unlike a linear pathway, the values for C J2

E2
and C J2

E1
are not bounded

between zero and one and depending on the values of the elasticities it is
possible for the control coefficients in a branched system to greatly exceed
one [45, 51].

It is also possible to arrange the kinetic constants so that every step in the
branch with respect to J2 has a control coefficient of unity (one of which
must be -1 in order to satisfy the summation theorem). We could therefore
claim that every step in the pathway is a rate limiting step with respect to
J2. This clearly shows us again that rate limitation is not a simple concept
as is traditionally supposed.

In a branched pathway it is possible to arrange the kinetic constants of
the enzymes such that the feed branch has a flux control coefficient of
+1, one of the output branch a coefficient of -1 and the other output
branch a coefficient of +1. That is, every step in the pathway is equally
rate limiting.

It is also possible to arrange the kinetic constants in the pathway such that
the flux coefficients for E1 and E3 are much greater than one. This effect
has been termed ultrasensitivity [51]. The Jarnac script 11.1 in the chapter
Appendix illustrates a branched pathway with control coefficients over 8.0.
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C
J2

E1
8.34

C
J2

E2
0.99

C
J2

E3
-8.51

Table 11.2 Results showing high flux control coefficients in a simple
branch model, see script 11.1

Table 11.2 shows the results from the Jarnac script simulation.

The explanation for these high control coefficients is straight forward. Any
changes in the two limbs that carry the high flux will have an adverse effect
on the very small flux that is carried by J2. Imagine a small stream coming
off a large river. Any flooding in the large river is likely to have a huge
impact on the small stream.

In a branched pathway it is possible to arrange the kinetic constants of
the enzymes such the flux control coefficients in the feed and output
branch can greatly exceed one.

Other than an asymmetric distribution of flux the ability to achieve high
flux sensitivity at a branch point also depends on the relative values of the
elasticities. For example increasing the value "2 relative to "3 increases
the sensitivity of the branch point. This could be achieved in a number of
ways:

1. E2 can show positive cooperativity with respect to the branch species.
That is any changes in E3 become amplified through E2.

2. v3 is operating in a more saturated regime compared to v2. This will
make "3 smaller than "2 and amounts to ensuring that theKm for v2
is higher than the Km of v3.

3. Product inhibition on v1 is very small.
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Most Flux Through J2

Let us now consider the other extreme, that is when most of the flux is
through J2, in other words ˛ ! 1 and 1 � ˛ ! 0 (See Figure 11.2(a)).
Under these conditions the control coefficients yield:

C
J2

E2
!

"1

"1 � "2

C
J2

E3
! 0

In this situation the pathway has effectively become a simple linear chain.
The influence of E3 on J2 is negligible. By analogy, changing the flow of
water in a small stream that comes off a large river will have a negligible
effect on the rate of flow in the large river.

Figure 11.2 summarizes the changes in sensitivities at a branch point.

11.2 Implicit Differentiation

As was previously done in Chapter 6 we can also compute the control
coefficients for a branched system by implicit differentiation. We start by
writing out the rate of change of S at steady state for a simple branch as
follows:

dS

dt
D v1 � v2 � v3 D 0

Assuming we wish to compute the coefficients with respect to E1, we ca
write the equation as:

0 D v1.S.E1/; E1/ � v2.S.E1// � v3S.E1//

Differentiating with respect to E1 gives:

0 D
@v1

@S

dS

dE1
C
@v1

@E1
�
@v2

@S

dS

dE1
�
@v3

@S

dS

dE1

Scaling, setting "1E1
D 1 and solving for CSE1

yields:

CSE1
D

1

"2˛ C "3.1 � ˛/ � "1
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Branch Point Properties System Output: 

S
~ 0< 1

< 1

(a) Most flux goes through 

Pathway behaves as a linear chain 
of reactions with respect to       

J2

J2

S

J2

>> 0 << 0

~ 1

(b) Most flux goes through 

Flux through        exhibits pathway
amplifcation.

J3

J3

J2

J2

J2

J1 J1

J3

Figure 11.2 The figure shows two flux extremes relative to the flux
through branch J2. In case (a) where most of the flux goes through J2,
the branch reverts functionally to a simple linear sequence of reactions
comprised of J1 and J2. In case (b), where most of the flux goes through
J3, the flux through J2 now becomes very sensitive to changes in activity
at J1 and J3. Given the right kinetic settings, the flux control coefficients
can become ŚultrasensitiveŠ with values greater than one (less than minus
one for activity changes at J3). The values next to each reaction indicates
the flux control coefficient for the flux through J2 with respect to activity
at the reaction.

where as before ˛ D J2=J1. The control coefficients for E2 and E3 can
be derived in a similar manner.

11.3 Futile or Substrate Cycles

Closely related to branched systems are cyclic pathways. A typical cyclic
pathway in shown in Figure 11.3. For cycling to occur both forward and
back reactions must operate. It is typical to find that the forward and re-
verse reactions are chemically distinct. Often one reaction will be driven
by ATP while the other by the hydrolysis of phosphate groups. Typical
examples in metabolism include the cycle between glucose and glucose-6-
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phosphate and the cycling between fructose-6-phosphate and fructose 1.6-
bisphosphate. Such cycles have often been called futile cycles (or better
substrate cycles) because of the expenditure of free energy (as ATP) with-
out any apparent benefit. A number of suggestions have been put forward
to rationalize this apparent waste of energy. These include heat production,
control of flux direction, metabolite buffering and more sensitive control
of the net flux through the pathway. We will only consider the later here.

Sensitivity Control

Figure 11.3 shows a typical cyclic pathway embedded in a linear chain.
Of interest is the sensitivity of the pathway flux, v1 or v4 to changes in

S2S1
v1

v2

v3

v4

Figure 11.3 Cyclic Pathway.

v2. The simplest assumption to make is that when we change v2 there is
no change in back flux, v3. This could be for a number of reasons, for
example v3 is saturated by its substrate S2.

Figure 11.4 illustrate two situations, a references state in panel a) and a
perturbation of 5% to v2 shown in panel b). Assuming that the entire
flux changes appear in output flux v4 and that v3 is not changed, then the
percentage change in v4 (or v1) is 100%, a twenty fold amplification.

This effect can be easily quantified as follows. First we note the flux con-
straint due to the cycle is:

v1 D v2 � v3

We then assume that a perturbation in v2 leads to the same change in v1,
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S2S1
 (10)  (10)

S2S1
 (20)  (20)

v1

 (200)v2

 (190)v3

v4

v1

 (210)v2

 (190)v3

v4

a)

b)

Figure 11.4 Amplification in a substrate cycle. Panel a) Reference state,
values refer to fluxes at various points, note that v1 D v2 � v3. Panel b)
Activation of v2 by 5% leads to a 100% change in v1 and v4. It assumes
that v3 is not activated by any changes in S2.

that is:
ıv2 D ıv1

We can now compute the fractional changes in v1 and v2 as:

ıv1

v1
D
ıv2

v2

v2

v1

The degree of amplification is then given by

ıv1=v1

ıv2=v2
D
v2

v1

Since v2 D v1 C v3 then

ıv1=v1

ıv2=v2
D
v1 C v3

v1
D 1C

v3

v1
(11.1)
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This result shows that the higher the cycling rate (v3) compared to the
through flux, the greater the amplification. This equation gives us the max-
imum degree of amplification possible. In practice, v3 will not remain un-
changed because S2 rises. In addition S1 will fall due to high consumption
which will reduce v2 but increase v1 due to lower product inhibition. The
resulting amplification is therefore a more complicated function than the
one suggested by equation 11.1. However equation 11.1 gives the maxi-
mum possible ampilfication.

To carry out a more detailed analysis we must turn to metabolic control
analysis. We can examine the flux control coefficient for C J1

2 :

C
J1

2 D
"11"

4
2 .1C v3=v1/

D

D D "11"
4
2 �

�
1C

v3

v1

� �
"11"

2
2 C "

4
2"
2
1

�
C
v3

v1

�
"11"

3
2 C "

4
2"
3
1

�
Let us simplify this equation by assuming that there is little or no product
inhibition from S2 on to v2 and S1 on to v3. This means that "31 D 0 and
"22 D 0. If we also multiply top and bottom by v1 and using the relation
v1 C v3 D v2, then we can simplify the control equation to:

C
J1

2 D
"11"

4
2v2

D

D D "11"
4
2v1 � "

4
2"
2
1v2 C "

1
1"
3
2v3

Two things to note immediately from this equation. There must be product
inhibition on the first step, "11, in order to get any sensitivity. If "11 is zero
then so is C J1

2 . This is because all control is now on the first step. This
highlights again the danger of using rate laws in models that are product
insensitive because the use of such rate laws often give misleading or triv-
ial results of no real interest. The second relatively simple statement to
make from the above equation is the importance of "32. This elasticity is
the activation of the reverse arm with respect to S2. The larger this elas-
ticity the smaller the degree of amplification. This is expected because
any flux that flows back along the reverse cycle instead of into v4 reduces
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the potential amplification factor. To analyze the equation further we can
make additional simplifications.

We know that sensitivity increases when the cycling rate increases relative
to the main flux, v1 and v4. If v2 and v3 are much greater than v1 then we
can simplify the equation further to:

C
J1

2 D
v2

v3"
3
2="

4
2 � v2"

2
1="

1
1

If the cycling rate is so high that v2 and v3 are almost indistinguishable
then we can see that maximal sensitivity is achieved when:

"32

"42
C
"21

"11
� 1

This tells us that substrate activation of v4 by S2 should be stronger than
substrate activation of S2 on v3 and secondly that product inhibition of S1
on v1 must be stronger than substrate activation of S1 on v2. If we think
about this in a thought experiment, these results are expected.

The requirements for amplification in substrate cycles is fairly complicated
and questions remain whether real pathways use this mechanism in vivo.

At this point we leave the topic of branches and cycles. In a subsequent
chapter we will consider the dynamic properties of conserved cycles.

Exercises

1. Given the simple branch in Figure 11.1 prove the following theo-
rems:

C
J2

E1
.1 � ˛/C C

J2

E3
D 0

C
J3

E1
˛ C C

J3

E2
D 0

2. Prove that the following two theorems are true for the branch point
in Figure 11.1:
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CSE1
.1 � ˛/C CSE3

D 0

CSE1
˛ C CSE2

D 0

3. Derive the flux branch points for the following multibranched sys-
tem:

S1

S2

v1

v2

v3

v4

v5

Figure 11.5 Multi-Branched Pathway.

Appendix

See Appendix ?? for more details of Jarnac.

p = defn cell

  var S;

  ext Xo, w;

  J1: $Xo -> S; Vm1/Km1*(Xo-S/Keq)/(1+Xo/Km1+S/Km2);

  J2: S -> $w; Vm2*S^4/(Km3+S^4);

  J3: S -> $w; Vm3*S/(Km4+S);

end;

p.Xo = 9;

p.S = 0.2;

p.Vm1 = 1.4;
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p.Km1 = 0.4;

p.Keq = 4.5;

p.Km2 = 0.6;

p.Vm2 = 0.05;

p.Km3 = 0.8;

p.Vm3 = 2.3;

p.Km4 = 0.3;

// Due to the high sensitivity, change the evaluation

// method to a five-point difference method (default is three).

// Also decrease the step size to improve accuracy.

p.diffstepsize = 0.01; p.diffmethod = 1; p.ss.tol = 1E-9;

p.ss.eval;

println "Flux Control Coefficients:";

println p.cc (<p.J2>, p.Vm1);

println p.cc (<p.J2>, p.Vm2);

println p.cc (<p.J2>, p.Vm3);

println "Elasticities:";

e1 = p.ee (<p.J1>, p.S);

e2 = p.ee (<p.J2>, p.S);

e3 = p.ee (<p.J3>, p.S);

println e1, e2, e3;

println "Fluxes: ", p.J1, p.J2, p.J3;

Listing 11.1 Simple Branched Pathway showing Flux Amplification



12
Moiety Conservation Laws

12.1 Moiety Constraints

Many cell processes operate on different time scales. For example, metab-
olic processes tend to operate on a faster time scale than protein synthesis
and degradation. Such time scale differences have a number of implica-
tions to model builders, software designers and model behavior. In this
chapter we will examine these aspects in relation to species conservation
laws. To introduce this topic consider a simple protein phosphorylation
cycle such as the one shown in Figure 12.1. This shows a protein undergo-
ing phosphorylation (upper limb) and dephosphorylation (lower limb) via
a kinase and phosphatase respectively.

The depiction in Figure 12.1 is however a simplification. The ATP used
during phosphorylation is not shown as well as the release of free phos-
phate during the dephosphorylation. In addition synthesis and degradation
of protein is also absent. In many cases we can leave these aspects out of
the picture. ATP for instance is held at a relatively constant level by strong

281
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Figure 12.1 Phosphorylation and Dephosphorylation Cycle forming a
Moiety Conservation Cycle between Unphosphorylated (left species) and
Phosphorylated protein (right species).

homeostatic forces from metabolism so that within the context of the cycle,
changes in ATP isn’t something we need worry about. More interestingly
is that within the time scale of phosphorylation and dephosphorylation we
can assume that the rate of protein synthesis and degradation is negligible.
This assumption leads to the emergence of a new property of the cycle
called moiety conservation [67].

In chemistry a moiety is described as a subgroup of a larger molecule. In
Figure 12.1 the moiety is a protein. During the interconversion between
the phosphorylated and unphosphorylated protein, the amount of moiety
(protein) remains constant. More abstractly we can draw a cycle in the
following way (Figure 12.2), where S1 and S2 are the cycle species:

S1 S2

v1

v2

A B

D C

Figure 12.2 Simple Conserved cycle where S1 C S2 D constant.

The two species, S1 and S2 are conserved because the total S1 C S2 re-
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mains constant over time (at least over a time scale shorter than protein
synthesis and degradation). Such cycles are collectively called conserved
cycles.

Protein signalling pathways abound with conserved cycles such as these
although many are more complex and may involve multiple phosphoryla-
tion reactions. In addition to protein networks other pathways also possess
conservation cycles. One of the earliest conservation cycles to be recog-
nized was the adenosine triphosphate (ATP) cycle. ATP is a chain of three
phosphate residues linked to a nucleoside adenosine group, Figure 12.3.

NH2

N

N

N

N

O

OH

OH

O

O

P

OH
O

O

P

OH
O

O

OH
P

OH

- - -

Figure 12.3 Adenosine Triphosphate: Three phosphate groups plus an
adenosine subgroup.

The linkage between the phosphate groups involves phosphoric acid an-
hydride bonds that can be cleaved by hydrolysis one at a time leading
in turn to the formation of adenosine diphosphate (ADP) and adenosine
monophosphate (AMP) respectively. The hydrolysis provides much of
the free energy to drive endergonic processes in the cell. Given the in-
satiable need for energy, there is a continual and rapid interconversion
between ATP, ADP and AMP as energy is released or captured. One
thing that is constant during these interconversions is the amount of adeno-
sine group (Figure 12.4). That is adenosine is a conserved moiety. Over
longer time scales there is also the slower process of AMP degradation
and biosynthesis via the purine nucleotide pathway but for many models
we assume that this process is negligible compared to ATP turn over by
energy metabolism.
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ATP AMPADP

Fast Slow

Degradation,
Synthesis

There are many other examples of conserved moieties such enzyme/enzy-
me-substrate complexes, NAD/NADH, phosphate and coenzyme A. In all
these cases the basic assumption is that the interconversions of the sub-
groups is rapid compared to their net synthesis and degradation. We should
emphasize that in reality conserved moieties do not exist since all molec-
ular subgroups will at some point be subject to synthesis and degradation.
However, over sufficiently short time scales, the sum total of these groups
can be considered constant. In this chapter we will consider conserved
moieties in detail. In particular we will look at how to detect them in our
models and how they influence the design of simulation software. We will
wait until Chapter 13 to discuss their effect on pathway dynamics.
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Figure 12.4 The adenosine moiety, indicated by the boxed molecular
group, is conserved during the interconversion of ATP, ADP and AMP.

Moiety: A subgroup of a larger molecule.
Conserved Moiety: A subgroup whose interconversion

through a sequence of reactions leaves it
unchanged.
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12.2 Moiety Conserved Cycles

Any chemical group that is preserved during a cyclic series of intercon-
versions is called a conserved moiety. Examples of conserved moiety
subgroups include species such as phosphate, acyl, nucleoside groups or
covalently modifiable proteins, As a moiety gets redistributed through a
network, the total amount of the moiety is constant and does not change
during the time evolution of the system. For any particular subgroup, the
total amount is determined solely by the initial conditions imposed on the
model.

Figure 12.5 Conserved Moiety in a Cyclic Network. The blue species are
modified as they traverse the reaction cycle, but the red subgroup (small
circle) remains unchanged. This creates a conserved cycle, where the total
number of moles of moiety (red subgroup) stays constant.

There are rare cases when a ‘conservation’ relationship arises out of a non-
moiety cycle. This does not affect the mathematic analysis but only the
physical interpretation of the relationship. For example, in Figure 12.6 the
constraint B � C D T applies even though there is no moiety involved.

The presence of conserved moieties is an approximation introduced into
a model, however, over the time scale in which the conservations hold,
their existence can have a profound effect on the dynamic behavior of the
model. For example the hyperbolic response of a simple enzyme (in the
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A
B

C
D

Figure 12.6 Conservation due to stoichiometric matching. In this system,
B � C D constant.

form of enzyme conservation betweenE andES ), or the sigmoid behavior
observed in protein signalling networks is due in significant part to moiety
conservation laws (see section 13).

Figure 12.7 illustrates the simplest possible network which displays a con-
served moiety, the total mass, S1 C S2 is constant during the evolution of
the network.

S1 S2

v1

v2

A B

D C

Figure 12.7 Simple Conserved cycle. The dotted lines signify negligible
levels of synthesis and degradation, therefore over short time scales, S1 C
S2 D constant.

The system equations for the simple conserved cycle are easily written
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down as:

dS1

dt
D v1 � v2

dS2

dt
D v2 � v1

From these equations it should be evident that the rate of appearance of S1
must equal the rate of disappearance of S2, that is dS1=dt D �dS2=dt .
This means that when ever S1 changes, S2 must change in the opposite
direction by exactly the same amount. During a simulation the sum of S1
and S2 will therefore remain unchanged.

Computationally we need only explicitly evaluate one of the differential
equations because the other one can be computed from the conservation
relation. Whichever differential equation is chosen however, the species
left out must be computed algebraically using the conservation law. There-
fore, the system can be reduced to one differential and one linear algebraic
equation compared to the two differential equations in the original formu-
lation.

S2 D T � S1

dS1

dt
D v1 � v2

The term T in the algebraic equation shown above refers to the total amount
of S1 and S2. This value is computed from the initial amounts given to S1
and S2 at the start of a simulation.

12.3 Basic Theory

The question we want to address here is how to determine whether a given
network contains conserved cycles and if so what are they. The key to
this question is the stoichiometry matrix, N. In the example shown in
Figure 12.7 the stoichiometry matrix is given by:
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Figure 12.8 Simulation of the simple cycle shown in Figure 12.7. The
total moiety remains constant at 10 concentration units. Model: S1 ->

S2; k1*S1; S2 -> S1; k2*S2; S1 = 10; k1=0.1; k2=0.2

N D

�
1 �1

�1 1

�
The first thing to note is that since either row can be derived from the other
by multiplication by �1, the rows are called linearly dependent rows,
(See Box 7.0) and the rank of the matrix is therefore 1 (See Box 7.1). It is
these dependencies that appear as linear relationships between the rates of
change, dS=dt .

Whenever a network exhibits conserved moieties, there will be dependen-
cies among the rows of N, and the rank of N rank(N), will be less than
m, the number of rows of N. The rows of N can be rearranged so that
the first rank(N) rows are linearly independent. The metabolites which
correspond to these rows are called the independent species (Si ). The
remaining m � rank.N/ rows correspond to the dependent species (Sd ).

In the simple conserved cycle, Figure 12.7, there is one independent species,
S1 and one dependent species, S2.
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Box 7.0 Linear Dependence and Independent - Recap

One of the most important ideas in linear algebra is the concept of lin-
ear dependence and independence. Take three vectors, say Œ1;�1; 2�,
Œ3; 0;�1� and Œ9;�3; 4�. If we look at these vectors carefully it should
be apparent that the third vector can be generated from a combination
of the first two, that is Œ9;�3; 4� D 3Œ1;�1; 2�C2Œ3; 0;�1�. Mathemat-
ically we say that these vectors are linearly dependent.

In contrast, the following vectors, Œ1;�1; 0�; Œ0; 1;�1� and Œ0; 0; 1�, are
independent because there is no combination of these vectors that can
generate even one of them. Mathematically we say that these vectors
are linearly independent.

Example 12.1

Figure 12.5 illustrates a three species cycle. What is the conservation law for this
pathway? The stoichiometry matrix for this system is given by:

N D

v1 v2 v324 �1 0 1

1 �1 0

0 1 �1

35 S1
S2
S3

(12.1)

Inspection reveals that the sum of the three rows is zero meaning that

dS1

dt
C
dS1

dt
C
dS1

dt
D 0

or that the total S1CS2CS3 is constant. There are no other relationships between
the rows other than this one.

Example 12.2

A linear pathway has the following stoichiometry matrix:

N D

�
1 �1 0

0 1 �1

�
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Does the pathway contain any conserved cycles? No, because neither row in the
matrix can be derived from the other by a simple operation, the rows are linearly
independent, therefore the pathway has no conserved cycles.

To illustrate this idea on a more complicated example, consider the path-
way shown in Figure 12.9. This pathway includes four species, S1, S2, E
and ES .

v2

~

v3

o

ES E

S1

S2

?

v1

*

Figure 12.9 Linked Conserved Cycles. The network rendered on the right
shows the moiety composition of the participating species.

The mass-balance equations of this model can be written down as:

dE

dt
D v2 � v3

dES

dt
D v3 � v2

dS1

dt
D v2 � v1

dS2

dt
D v1 � v3

A visual inspection of the mass-balance equations reveals the following
two relationships:

dE

dt
C
dES

dt
D 0

dES

dt
C
dS1

dt
C
dS2

dt
D 0

(12.2)

These relationships tell us that there are two conservation laws, E C ES
and ES C S1 C S2. This means that given the amount of ES , the amount
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Box 7.1 The Rank of a Matrix - Recap

Closely related to linear independence (Box 7.0) is the concept of Rank.
Consider the three vectors described in Box 7.0, Œ1;�1; 2�, Œ3; 0; 1� and
Œ9;�3; 4� and stack them one atop each other to form a matrix:24 1 �1 2

3 0 1

9 �3 4

35
then the Rank is simply the number of linear independent vectors that
make up the matrix. In this case the Rank is 2, because there are only
two linear independent row vectors in the matrix.

of E can be computed. In addition, given the amount of ES and S1, the
amount of S2 can be computed. Therefore ES and S1 can be designed
the independent species and E and S2 the dependent species. What this
means in practical terms is that in a modeling program only two differential
equations need be solved instead of four. The reduced model equations
will look like:

E D T1 �ES

S2 D T2 � S1 �ES

dES

dt
D v3 � v2

dS1

dt
D v2 � v1

where T1 is the total amount of E type moiety and T2 is the total amount
of S type moiety.
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The stoichiometry matrix for the model in Figure 12.9 is given by:

N D

v1 v2 v32664
1 0 �1

0 �1 1

�1 1 0

0 1 �1

3775
S2
ES

S1
E

(12.3)

Examining the stoichiometry matrix reveals conservation laws as relation-
ships among the matrix rows. The 4th row (E) can be formed by multi-
plying the 2nd row (ES ) by -1, and the 3rd row (S1) can be formed by
multiplying the first row by -1 and adding it to the 4th row (ES ).

These simple examples show that it is possible to derive conservation laws
by looking for dependencies among the rows of the stoichiometry matrix.
For simple cases this can be done by inspection but for large pathways this
approach is not practical. Instead a more systematic theory for deriving
the conservation laws must be developed.

12.4 Computational Approaches

There are a number of related methods for computing the conservation
laws of a given pathway, some are simple such as the one shortly to be
described, while others are more sophisticated and are used to determine
the conservation laws in very large stoichiometry matrices.

The easiest method to derive conservation laws is to use row reduction [63,
15, 16]. This is based on forward elimination which is the first part of
Gaussian Elimination. Gaussian Elimination is a traditional way to solve
simultaneous linear equations by eliminating one unknown at a time and
is a technique often taught in high school. Elimination is carried out by
applying a series of simple manipulations called elementary operations.
These operations include interchanging two equations (exchange), multi-
plying an equation through by a nonzero number (scaling) and adding an
equation one or more times to another equation (replacement). In practice
the equations are recast into a matrix form so that the elementary opera-
tions are applied to the values in the matrix where each row of the matrix
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represents an equation. Thus interchanging two equations is equivalent to
swapping two rows in the matrix. The elementary operations are carried
out on the matrix until a particular arrangement, called the echelon form,
is established (See Box 7.3).

Elementary operations are often represented in matrix form and are then
called elementary matrices (See Box 7.2). Applying a particular elemen-
tary operation then becomes equivalent to multiplying by an elementary
matrix.

The technique for finding conservation laws works as follows. Consider
the network in Figure 12.9. The system equation for this network is:

S2
ES

S1
E

2664
1 0 �1

0 �1 1

�1 1 0

0 1 �1

3775
24 v1
v2
v3

35 D
2664
dS2=dt

dES=dt

dS1=dt

dE=dt

3775
We will recast the equation in the following form where an identity matrix
has been added to the right-hand side.

Nv D I
ds

dt

Written out fully the system equation will look like:

S2
ES

S1
E

2664
1 0 �1

0 �1 1

�1 1 0

0 1 �1

3775
24 v1
v2
v3

35 D
2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775
2664
dS2=dt

dES=dt

dS1=dt

dE=dt

3775
Let us now apply forward elimination to the stoichiometry matrix. To do
this we apply a series of elementary operations to the left-hand side such
that the stoichiometry matrix is reduced to echelon form. For consistency
we apply the same set of elementary operations to the right-hand side so
that the identity matrix records whatever operations we carried out. This
amounts to multiplying both sides by a set of elementary matrices. We
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Box 7.2 Elementary Matrices - Recap

Elementary matrix operations such as row exchange, row scaling or row
replacement can be represented by simple matrices called elementary
matrices, called Type I, II and III respectively. Elementary matrices
can be constructed from the identity matrix. For example a scaling
operation can be represented out by replacing one of the elements of the
main diagonal of an identity matrix by the scaling factor. The following
matrix represents a type II matrix which will scale the second row of a
given matrix by the factor k: 241 0 0

0 k 0

0 0 1

35
Type I elementary matrices will exchange two given rows in a given
matrix and are constructed from an identity matrix where rows in an
identity matrix are exchanged that correspond to the rows exchanged in
the target matrix. The following type I matrix will exchange rows 2 and
3 in a target matrix: 241 0 0

0 0 1

0 1 0

35
Type III elementary matrices will add/subtract a given row in a target
matrix to another row in the same matrix. Type III matrices are con-
structed from an identity matrix where a single off diagonal element is
set to the multiplication factor and the specific location represents the
two rows to combine. If an elementary matrix adds a row i to a row
j multiplied by a factor ˛, then the identity matrix with entry i; j is
set to ˛. In the following example, the type III elementary matrix will
subtract five times the 2nd row from the 3rd row.241 0 0

0 0 1

0 �5 0

35
A particularly important property of elementary matrices is that they
can all be inverted. In addition, pre-multiplying by an elementary ma-
trix will modify the rows of a target matrix while post-multiplying will
operate on the columns.



12.4. COMPUTATIONAL APPROACHES 295

only need to reduce the matrix to its row echelon form not to its reduced
echelon form.

Reducing a matrix to echelon form raises the possibility of generating zero
rows in the matrix if there are dependencies in the rows (See Box 7.3).

This being the case the system equation after forward elimination can be
expressed in the following way:�

M

0

�
v D E

ds

dt
(12.4)

where the identity matrix has been shown transformed into the matrix E
which represents the product of all elementary operations that were applied
to the left-hand side. The left-hand side has itself been transformed into an
echelon form which is represented as a partitioned matrix. The E matrix
can also be partitioned row-wise to match the partitioning in the echelon
matrix, that is: �

M

0

�
v D

�
X

Y

�
ds

dt
(12.5)

Multiplying out the lower partition one obtains:

Y
ds

dt
D 0 (12.6)

This general result is equivalent to the equations shown in 12.2, that is 12.6
represents the set of conservation laws. Determining the conservation laws
therefore involves reducing the stoichiometry matrix and extracting the
lower portion of the modified identity matrix.

Let us now proceed with an example to illustrate this method. We will use
the stoichiometry matrix from equation 12.3. For convenience the stoi-
chiometry and identity matrix are placed next to each other in the follow-
ing sequence of elementary operations. An elementary operation carried
out on the stoichiometry matrix is simultaneously applied to the identity
matrix.
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Box 7.3 Echelon Forms - Recap

There are two kinds of matrices that one frequently encounters in the
study of linear equations. These are the row echelon and reduced ech-
elon forms. Both matrices are generated when solving sets of linear
equations. The row echelon form is derived using forward elimination
and the reduced echelon form by Gauss-Jordan Elimination.

A row echelon matrix is defined as follows:

1. All rows that consist entirely of zeros are at the bottom of the matrix.
2. In each non-zero row, the first non-zero entry is a 1, called the leading
one.
3. The leading 1 in each row is to the right of all leading 1’s above it.
This means there will be zeros below each leading 1.

The following three matrices are examples of row echelon forms:241 4 3 0

0 0 1 7

0 0 0 0

35 �
1 1 0

0 1 0

� 241 5 3 0

0 1 7 2

0 0 0 1

35
The reduced echelon form has one additional characteristic:

4. Each column that contains a leading one has zeros above and below
it. The following three matrices are examples of reduced echelon forms:241 0 4 0

0 1 1 7

0 0 0 0

35 �
1 0 0

0 1 0

� 241 0 0

0 1 0

0 0 1

35
Sometimes the columns of a reduced echelon can be ordered such that
each leading one is immediately to the right of the leading one above
it. This will ensure that the leading 1’s form an identity matrix at the
front of the matrix. The reduced echelon form will therefore have the
following general block structure:�

I A

0 0

�
It is always possible to reduce any matrix to its echelon or reduced
echelon form by an appropriate choice of elementary operations. The
function rref() implemented in many math applications will generate
a reduced row echelon.
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1. Stoichiometry matrix on the left and identity matrix on the right.2664
1 0 �1

0 �1 1

�1 1 0

0 1 �1

3775
2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775
2. Add the 1st row to the third row to yield:2664

1 0 �1

0 �1 1

0 1 �1

0 1 �1

3775
2664
1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1

3775
3. Add the 2nd row to the third and forth rows to yield:2664

1 0 �1

0 �1 1

0 0 0

0 0 0

3775
2664
1 0 0 0

0 1 0 0

1 1 1 0

0 1 0 1

3775
4. Multiply the second row by -1 to yield the final echelon form:2664

1 0 �1

0 1 �1

0 0 0

0 0 0

3775
2664
1 0 0 0

0 �1 0 0

1 1 1 0

0 1 0 1

3775
The final operation achieves the goal of reducing the stoichiometry matrix
to an echelon form (in this case it happens to be a reduced echelon form).
Note that the operation has resulted in two zero rows appearing in the re-
duced stoichiometry matrix. These two rows correspond to the Y partition
in equation 12.5. The lower two rows can be extracted from the right-hand
matrix (what was once the identity matrix) to construct equation 12.6, thus

�
1 1 1 0

0 1 0 1

� 2664
dS2=dt

dES=dt

dS1=dt

dE=dt

3775 D 0
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Or:

dS2

dt
C
dES

dt
C
dS1

dt
D 0

dES

dt
C
dE

dt
D 0

From the above equations the following conservation laws should be evi-
dent:

S2 CES C S1 D T1

ES CE D T2
(12.7)

In summary the algorithm for deriving the conservation laws is as follows:

1. Apply elementary operations to the stoichiometry matrix until the ma-
trix is reduced to its row echelon form. Simultaneously apply the elemen-
tary operations to an identity matrix. The size of the identity matrix should
be equal to the number of rows in the stoichiometry matrix.

2. If there are zero rows at the bottom of the reduced stoichiometry matrix
then there are conservation laws in the network otherwise there are not.
The number of conservation laws will be equal to the number of zero rows.

3. Extract the rows in the transformed identity matrix that correspond to
the position of the zero rows in the reduced stoichiometry matrix. The
extracted rows represent the conservation laws.

There are two points worth making when applying this algorithm. The first
is that any row swaps made using the row reduction in the stoichiometry
matrix will not translate to swaps in the names of the species on the right-
hand side of the equation. This means that when reading the conservation
rows, the names on the columns are not changed by any row exchanges
in the stoichiometry matrix. The second point to make is that when car-
rying out the elementary row operations, it is recommended to eliminate,
whenever possible, terms below a leading entry by adding rather than sub-
tracting. This will ensure that entries in the transforming identity matrix
remain positive and that the resulting conservation laws will be made up
of positive terms. Sometimes the ability to add will not be possible and
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subtractions will be necessary. This will result in negative terms appearing
in the conservation laws which may make them more difficult to interpret
physically.

A useful strategy that can be used to avoid negative terms in the conser-
vation equations is to order the rows of the stoichiometry matrix such that
any species that is likely to appear in more than one conservation relation-
ship should be placed at the bottom of the stoichiometry matrix. In the
case of the previous example we would make sure that ES is located to the
bottom row of the stoichiometry matrix. This ordering ensures that the in-
dependent species (top rows) are represented by the free variables and the
dependent species (bottom rows) by the shared variables. This means that
the shared or dependent variables (i.e. complexes) will then be a function
of the free variables which is more likely to result in positive terms [73].
A more brute force method is to try all permutations of the matrix rows
until a positive set of conservation laws is found. For small models (< 10

species) this approach is a viable option.

Although it is possible to manually reduce a stoichiometry matrix, it is
far easier to use specialized math software such Scilab, Octave, Matlab
and Mathematica or even advanced modern desktop calculators. All these
tools offer a rref() command for generating a reduced row echelon. The
following examples will illustrate the use of the freely available Scilab
application (www.scilab.org) to compute the conservation laws.

Example 12.3

Row reduction using Scilab/Matlab. Given the following stoichiometry matrix,
use Scilab functions to row reduce and extract the conservation laws.

N D

S2
ES

S1
E

2664
1 0 �1

0 �1 1

�1 1 0

0 1 �1

3775
Enter the stoichiometry matrix into the software:

-->n = [1 0 -1; 0 -1 1; -1 1 0; 0 1 -1];

Augment the matrix with the identity matrix, this will allow us to record row
reduction operations in the identity matrix part of the augmented matrix.

www.scilab.org
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-->ni = [n, eye(4,4)]

ni =

1. 0. - 1. 1. 0. 0. 0.

0. - 1. 1. 0. 1. 0. 0.

- 1. 1. 0. 0. 0. 1. 0.

0. 1. - 1. 0. 0. 0. 1.

-->

Row reduce the augmented matrix:

-->rni = rref (ni)

rni =

1. 0. - 1. 0. 0. - 1. 1.

0. 1. - 1. 0. 0. 0. 1.

0. 0. 0. 1. 0. 1. - 1.

0. 0. 0. 0. 1. 0. 1.

The left partition of the reduced matrix contains two zero rows, therefore there
are two conservation laws. These laws correspond to the two bottom rows in the
right partition. We extract the rows in the right partition to yield:

-->c = rni(3:4,4:7)

c =

1. 0. 1. - 1.

0. 1. 0. 1.

The species column order is the same as the species row order in the original
matrix, that is S2; ES; S1 and E, therefore:

S2 C S1 �E D T1

ES CE D T2

Note the negativeE term in the first conservation law. At first glance this does not
appear to be the same set of conservation laws that were derived earlier. However,
if we substitute E from the second equation into the first we will get the same set
of conservation laws: S1 C S2 C ES D T , showing us that the two sets are
identical. To avoid negative terms appearing in the conservation laws, we can use
the rule that all complex species (that is shared species), such as ES be moved to
the bottom of the matrix (See next example).
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Example 12.4

Row reduction using Scilab/Matlab. Given the following stoichiometry matrix,
use Scilab functions to row reduce and extract the conservation laws. In this
example, the shared species ES has been moved to the bottom of the matrix.

N D

S2
S1
E

ES

2664
1 0 �1

�1 1 0

0 1 �1

0 �1 1

3775
The reduced augmented matrix is now:

-->rni = rref (ni)

rni =

1. 0. - 1. 0. - 1. 0. - 1.

0. 1. - 1. 0. 0. 0. - 1.

0. 0. 0. 1. 1. 0. 1.

0. 0. 0. 0. 0. 1. 1.

Once again there are two zero rows but this time the corresponding conservation
laws all have positive entries, yielding the following equations:

S2 C S1 CES D T1

ES CE D T2

The following Scilab/Matlab code will find the conservation laws for any
stoichiometry matrix.
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// Compute Conservation Laws

// -------------------------

// Enter the stoichiometry matrix first

n = [1 0 -1; 0 -1 1; -1 1 0; 0 1 -1];

nRows = size(n, 1);

// Create the augmented matrix

ni = [n, eye(nRows,nRows)];

// Carry out row reduction

rni = rref (ni);

r = rank (n);

// Extract the conservation rows

c = rni(r+1:nRows,size(n,2)+1:size(ni,2));

// Display result

c

Figure 12.10 General purpose Scilab/Matlab code to determine conserva-
tion laws using row reduction.

Row reduction of the augmented stoichiometry is probably the easiest way
to derive the conservation laws. The main advantage of this method in-
cludes simplicity and significantly the ability to direct the calculation by
setting the order of rows in the initial stoichiometry. However it has one
disadvantage which is potential numerical instability for large systems. In
particular for large genomic style stoichiometry models [62] that involve
many hundreds or even thousands of reactions and species, the method
can suffer dramatic failures due to rounding errors during row reduction.
In a subsequent section more robust methods will be described that rely
on QR factorization [84] and Singular Value Decomposition (SVD). The
main disadvantage of these other methods is that sometimes, depending on
the particular algorithm, the row order can not be easily prescribed. In any
event there are some simple tests one can do to check that the computed
conservation laws are correct, one such test will be described next.
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Null Space of NT

To complete this section let us consider in more detail the algebraic nature
of the Y partition in equation 12.6.

The elementary matrix, E , reduced the stoichiometry matrix to a row ech-
elon form, that is to:

EN D

�
M

0

�
(12.8)

The E matrix corresponds to the same E matrix in equation 12.5, so that
we can partition the elementary matrix, E row-wise into X and Y parti-
tions (equation 12.5). �

X

Y

�
N D

�
M

0

�
From which we can immediately see that:

YN D 0

Taking the transpose we obtain

NTY T
D 0

The Y partition is therefore the null space of the transpose of the stoi-
chiometry matrix 1. This is a significant result for a number of reasons. It
gives a very concise definition of the conservation matrix but more impor-
tantly it opens up the possibility of using other computational approaches.

The other point of interest is that this result can be used to test whether
a set of conservation laws were correctly derived or not. To do this we
simply multiply the transpose of N by the transpose of the conservation
matrix Y and make sure the product equals zero.

1cf. Chapter 4, Section Computing the Null Space in Introduction to Linear Algebra for
Systems Biology, Sauro)
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Many software packages such as Matlab, Scilab or Mathematica supply
commands to compute the null space. This makes is easy to compute the
conservation laws by simply computing the null space of the transpose of
the stoichiometry matrix. For example the following session shows how
we can use Scilab to compute the conservation laws for the example matrix
we used in previous examples.

-->N = [1 0 -1; -1 1 0; 0 1 -1; 0 -1 1]

N =

1. 0. - 1.

0. - 1. 1.

- 1. 1. 0.

0. 1. - 1.

--> ns = kernel (N')

ans =

0. 0.6324555

0. 0.6324555

0.7071068 - 0.3162278

0.7071068 0.3162278

--> // Convert the orthonormal set

--> // into a rational basis using rref

-->rref (ns')'

ans =

1. 0.

1. 0.

0. 1.

1. 1.

The null space command in Scilab is kernel, in Matlab it is null and in
Mathematical it is NullSpace. Like many null space commands imple-
mented in mathematical software, the kernel command in Scilab has the
drawback of generating an orthonormal set. In order to generate a rational
basis we must row reduce the kernel, this results in a more interpretable set
of conservation laws. In Matlab it is possible to use the modified null space
command, null (N, 'r') which will automatically generate a rational
basis (Neither Octave or Scilab support this format). Interestingly, Mathe-
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matica’s (7.0) null space function does generate a rational basis, however,
the algorithm that Mathematica uses is unknown which raises its own is-
sues.

Given that we can now compute the conservation laws for arbitrary net-
works, one question to consider is whether conservation laws have any
behavioral consequences. The answer to this question will be considered
in Chapter 13.

12.5 Summary

Of particular interest is to compare these results with equation 4.8. Whereas
the flux balance relationships are derived from the stoichiometry matrix,
the moiety conservation laws are derived from the transpose of the stoi-
chiometry matrix. Thus to summarize:

Moiety Conservation Laws:

�
�L0 I

� �NR

N0

�
D 0 NT � T

D 0

Flux Balance Laws:

�
NDC NIC

� � I
K0

�
D 0 NR K D 0
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13
Moiety Conserved Cycles

13.1 Moiety Conserved Cycles

In this chapter the topic of moiety conserved cycles and their impact on
behavior will be examined. There are some more advanced concepts in
this chapter which require some prerequisite knowledge of bistability. The
reader is refereed to the Appendix for a brief review of bistability. Alter-
natively the section that requires knowledge of bistability can be omitted.

In Chapter ?? we introduced the idea of moiety conceived cycles. To re-
cap, Figure 13.1 shows a typical moiety-conserved cycle. In this cycle
there are two species, one might be a protein and the other the phospho-
rylated protein. If we assume that the synthesis and degradation rates for
the protein is low in comparison to the dynamics of phosphorylation and
dephosphorylation, then we can assume that the total amount of protein,
phosphorylated plus unphosphorylated is constant. Figure 13.2 shows a
more abstract form of a moiety-conserved cycle.

307
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Figure 13.1 Phosphorylation and Dephosphorylation Cycle forming a
Moiety Conservation Cycle between Unphosphorylated (left species) and
Phosphorylated protein (right species).

S1 S2

v1

v2

A B

D C

Figure 13.2 Simple Conserved cycle where S1 C S2 D constant.

13.2 Species Limits

One of the simplest effects of a moiety-conserved cycle is that it puts up-
per limits on the concentrations of the participants. In the simple cycle
shown in Figure 13.2 where the total amount of mass in the cycle is fixed
at S1 C S2, the upper limit that either S1 of S2 can reach is S1 C S2.
This effect was made very clear in a study of glycolysis in Trypanosoma
brucei (Figure 13.3). What is unusual about the pathway is that much of
glycolysis resides in a single membrane organelle called the glycosome.
Many of the metabolites in the glycosome are phosphorylated, for exam-
ple, glucose-6-phosphate, glyceraldehyde-3-phosphate and it is this that
creates a constraint on the levels of phosphate. In addition to the glyco-
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some, the mitochondrion of Trypanosoma brucei appears to do very little
other than oxidizing the glycerol 3-phosphate via oxygen utilization.

Glucose

Glucose

Glucose

Glu-6-P

Fru-6-P

Fru-1,6-BP

G3P

Gly-1-3-BP

NAD

NADH

3-PGAGlycerol
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AMP ATP
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ADP
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ATP

ATP

ADP

ADP

ATP

ADP

AMP

DHAP

Gly-3-P

Figure 13.3 Energy Metabolism of Trypanasoma brucei

What is of interest is that an analysis of the stoichiometry using the tech-
niques described in Chapter ?? indicates the presence of four conservation
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laws, these include:

1: ATPc C ADPc C AMPc
2: ATPg C ADPg C AMPg
3: NADg C NADHg
4: glycerol 3-phosphatec C dihydroxyacetone phosphatecC

glycerol 3-phosphateg C dihydroxyacetone phosphategC

glucose 6-phosphateg C fructose 6-phosphategC

fructose 1,6-bisphosphateg C glyceraldehyde 3-phosphateC

1,3-bisphosphoglycerateC ATPg C ADPg

where the subscript c means cytoplasm and g means glycosome. Fig-
ure 13.4 shows the same metabolic map as Figure 13.3 but with the con-
served moieties highlighted. The fact that phosphate is a conserved moi-
ety means that any species that includes the moiety will be constrained by
the total amount of phosphate. As pointed out by Eisenthal and Cornish-
Bowden [19] in relation to the work of Bakker et al [3], there are two
possible ways to disrupt an organism metabolically. One can either reduce
a flux to a very low level or increase one or more metabolite levels to such
high levels that they become toxic. Bakker’s analysis [3] of Trypanosoma
metabolism showed that much of the flux control was on glucose transport.
This limits the number of potential sites for flux disruption. As for disrupt-
ing concentrations only one step had a significant concentration control
coefficient, Pyruvate transport [19] again limited the choice for drug tar-
gets. The reason why pyruvate transport is a susceptible target is because
it is one of the few steps not involved in the conservation laws.

13.3 Ultrasensitivity

Another area where moiety-conserved cycles can have a marked behav-
ioral impact is in generating ultrasensitivity, a term used to describe the
amplification of a signal. For example, if a change in an input of 1%
results in an output change of 2% then the input is amplified two fold.
In engineering this effect is often referred to as the gain of the system.



13.3. ULTRASENSITIVITY 311

Glucose

Glucose

Glucose

Glu-6- P

AMP- P P

AMP- P

Fru-6- P

Fru-1,6- PP

AMP- P P

AMP- P

DNA- P GA-3- P

GA-1-3- P P

NAD

NADH

3-PGA

Gly-3- P

Glycerol
AMP- P P

AMP- P

Glycerol

Pi

3-PGA

2-PGA

PEP

Pyruvate

Pyruvate

AMP- P

AMP- P P

Gly-3- P

DNA- P

O2

H O2

AMP- P AMP- P

AMP- P PAMP

AMP- P AMP- P

AMP- P PAMP

Mitochondria

Glycosome

Host Blood Stream

Figure 13.4 Energy Metabolism of Trypanasoma brucei

Amplification of signals is a fundamental operation in both biology and
engineering. Many inputs in biology are small magnitude that they must
be amplified before they can be acted upon. Examples include changes in
hormonal levels and amplification of sensory inputs from external stimuli
such as nutrient gradients or light levels. There are also other reasons to
amplify signals, for example to generate sustained oscillations, implement
effective responses in feed-forward networks.

The classic mechanism for generating gains greater than one is via multi-
meric cooperativity. We will not discuss this here but refer the reader to
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other texts [71] where the topic is discussed in much more detail. In this
chapter we will discuss a number of other mechanisms for generating high
gains such as zero-order sensitivity in covalent cycles and titration based
ultrasensitivity.

Quantifying Gain

A common way to measure the gain of a system is measure the ratio of
fractional change between the output, Y , and input, X , of the system:

R D
d lnY
d lnX

This is clearly related to the control coefficients discussed previously. If
R > 1 then the system is ultrasensitive.

13.4 Saturation

Perhaps the simplest way to amplify a signal is to use two enzyme cat-
alyzed steps where the second step is saturable and the first step irre-
versible. If the first step is increased in activity (by adding more active
enzyme) there will come a point where the intermediate concentration, S ,
becomes very sensitive to the first step, Figure 13.5.

Xo
v1
�! S

v2
�! X1

13.5 Sequestration

There is a very simple mechanism involving sequestration that can gen-
erate an ultrasensitivity response. The effect depends again on a conser-
vation law between the active participant, A and a sequester molecule B .
The reaction is just:

AC B 
 AB
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Figure 13.5 Sensitivity in a two step pathway. First step irreversible,
second step saturable. When the second step is near saturation, the in-
termediate concentration is very sensitive to change in the activity of the
first step. Xo -> S; k1*Xo; S -> ; Vm*S/(Km + S); Xo = 1; k1

= 0.1; Km = 0.4l Vm = 4.5. Upper curve is CS
k1

, lower curve is con-
centration of S .

The response begins with a low level of active molecule A. As A is in-
creased, most free A is sequestered by B . However eventually A reaches
a point where the amount of free B is so small that free A can not longer
be removed. At this point the concentration of A rises rapidly. This is
the point where ultrasensitivity is seen. Figure 13.6 illustrates a number
of plots that show ultrasensitivity between AT D 8 and AT D 10. In
this model, the active participant A is also used to activate a saturable pro-
moter, which is why the curve eventually plateaus at high total A. Buchler
and Cross

13.6 Zero-Order Ultrasensitivity

The MAPK (mitogen-activated protein kinase) pathways, are highly con-
served and common components in signal transduction pathways (Chang
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Figure 13.6 Ultrasensitivity by Simple Sequestration: A + B <-> AB;

k1*A*B - k2*AB.

& Karin, 2001). Virtually all eukaryotic cells that have been examined
(ranging from yeast to man) possess multiple MAPK pathways each of
which responds to multiple inputs. In mammalian systems MAPK path-
ways are activated by a wide range of input signals including a variety of
growth factors and environmental stresses such as osmotic shock and is-
chemic injury (Kyriakis & Avruch, 2002; Gomperts et al., 2002). Once the
MAPK pathways have integrated these signals, they coordinately activate
gene transcription with resulting changes in protein expression leading to
cell cycling, cell death and cell differentiation.

Consider the simple conserved cycle shown in Figure 13.8. As discussed
in Chapter ??, the two species, S1 and S2 are conserved because the total
S1 C S2 remains constant over time (at least over a time scale shorter
than protein synthesis and degradation). Let us assume that the kinetics
governing each cycle arm is simple first order mass-action kinetics.

If we plot the steady state concentration of S1 and S2 versus the kinetic
constant k1 we get the response curves shown in Figure 13.9. The response
curves are in fact hyperbolic. For example, S2 rises linearly then levels off
to 10 concentration units in the limit. What is happening is that as k1
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Figure 13.7 Sensitivity, CAAT
as a function of AT

increases more and more S1 is converted to S2 leading to a rise in S2 and
a fall in S1. The limit is reached because there is only a limited amount of
mass in the cycle.

Simple Cycle with Non-Linear Kinetics

If we now take the simple cycle model from the last section and instead
of linear kinetics we now use non-linear kinetics, for example Michaelis-
Menten kinetics on the forward and reverse arms then additional changes
in behavior will be observed.

The response is now sigmoidal rather than hyperbolic. The reason for
this is explained in Figure 13.11. The intersection points marked by a
grey marker represents the corresponding steady state point (v1 D v2). A
perpendicular dropped from these indicates the corresponding steady state
concentration of S1. If the activity of v1 is increased by increasing k1
by 20% then the v1 curve moves up. The left intersection point indicates
how much the steady state concentration moves as a result, shown by �S .
The closer the steady state point is to the saturated point of the curve, the
more the steady state will move. This shows that the response in S1 can
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Figure 13.8 Simple Conserved cycle where S1 C S2 D constant DMt .

be very sensitive in changes in k1. Because k1 is a linear term in the rate
law we could replace it with the concentration of the enzyme implied in
the Michaelis-Menten law. In practice such a cycle could represent a phos-
phorylation/dephophsorylation cycle where the implied enzyme is now a
kinase. The kinase in turn could be controlled by other processes so that
changes in the kinase activity results in sigmoid (or switch like) behavior in
the cycle dynamics. In the literature such behavior was studied by [27, 28]
and has been observed experimentally [40].

Analytical Approach

It is possible to use the machinery of metabolic control analysis derive
the conditions for ultrasensitivity in a covalent modification cycle without
recourse to specific kinetic laws [27, 28]. This was work was originally
carried out by Small and Fell [78]. To investigate ultrasensitivity we need
to evaluate the concentration control coefficient, CS2

v1
. To do this we would

normally write down the connectivity theorem (6.4) and summation theo-
rem (6.6), and solve for the appropriate coefficient. In this example we
cannot easily do this because S1 and S2 are not independent and the nor-
mal connectivity theorems do not apply. As a result we must first derive
a modified connectivity theorem that is specific to covalent modification
cycles [20, 39].

Assume that a small change, ıS1 is made in S1. In order to maintain
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Figure 13.9 Simulation of the simple cycle with linear kinetics. Plot
shows the steady state concentration of each species as a function of k1.
Model: S1 -> S2; k1*S1; S2 -> S1; k2*S2; S1=10; k1=0.1; k2=0.4

a constant amount of S1 C S2, we also make a compensating change in
ıS2 equal to �ıS1. These changes will cause both v1 and v2 to change,
however we can make changes toE1 andE2 such that the reaction rates are
unchanged. We can express this thought experiment using the following
local equations:

ıv1

v1
D
ıE1

E1
C "11

ıS1

S1
C "12

ıS2

S2
D 0

ıv2

v2
D
ıE2

E2
C "22

ıS2

S2
C "21

ıS1

S1
D 0

To make things simpler let us assume that each forward reaction is product
insensitive, that is "21 D 0 and "12 D 0 so that the local equations are now
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Figure 13.10 Simulation of the simple cycle with non-linear ki-
netics illustrating sigmoid or ultrasensitive behavior. Model: S1 ->

S2; k1*S1/(Km1+S1); S2 -> S1; k2*S2/(Km2+S2); S1=10; k1=0.1;

Km1=0.5; k2=0.4; Km2=0.5

reduced to:

ıE1

E1
D �"11

ıS1

S1

ıE2

E2
D �"22

ıS2

S2

We can also express the thought experiment in terms of the systems equa-
tion:

ıS2

S2
D C

S2

E1

ıE1

E1
C C

S2

E2

ıE2

E2

We can now substitute the local equations into the systems equation:

�
ıS2

S2
D C

S2

E1
"11
ıS1

S1
C C

S2

E2
"22
ıS2

S2
(13.1)
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Figure 13.11 Plots the two cycle rates, v1 and v2 for the simple cy-
cle with non-linear kinetics. Model: S1 -> S2; k1*S1/(Km1+S1); S2 ->

S1; k2*S2/(Km2+S2); S1=1; k1=1; Km1=0.05; k2=1; Km2=0.05. The
intersection points marked by a grey marker represents the steady state
point (v1 D v2). See main text for explanation.

The thought experiment added the constraints that ıS1 D �ıS2, so that:

�
ıS2

S2
D �C

S2

E1
"11
ıS2

S2

S2

S1
C C

S2

E2
"22
ıS2

S2

Canceling the ıS2=S2 terms yields the covalent modification connectivity
theorem:

�1 D �C
S2

E1
"11
S2

S1
C C

S2

E2
"22

One way to reexpress this is to divide both sides by S2 and rearrange so
that:

1

S2
D C

S2

E1
"11
1

S1
� C

S2

E2
"22
1

S2
(13.2)

We now combine this new connectivity theorem with the normal summa-
tion theorem:

C
S2

E1
C C

S2

E2
D 0
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Solving for CS2

E1
we obtain:

C
S2

E1
D

S1

"11S2 C "
2
2S1

(13.3)

If we assume that v1 and v2 operate far below saturation than both elastic-
ities, "11 and "22 are approximately one, that:

C
S2

E1
D

S1

S2 C S1

This value will always be equal to or less than one. Therefore there is no
possibility of ultrasensitivity when both enzymes are operating first-order.
However if we assume that the enzymes are operating near saturation, then
"11 < 1 and "22 < 1. For example if we set S1 D 9 and S2 D 1 and set both
elasticities to 0.5 then the control coefficient, CS2

E1
D 1:8. If we reduce the

elasticities further "11 D 0:2 and "22 D 0:2, the response of the system rises
to 4.5. That is a 1% increase in E1 will result in a 4.5% increase in S2. In
most cases like this, S2 is itself a protein, often a kinase. So that a small
change in one protein, E1 can have a large effect on another, S2.

Cascades

It is common in eukaryotic organisms to find cascades of covalent modifi-
cation cycles. Figure 13.12 shows one such cascade. The overall gain of
the system, between the input S and output, S4 is given by the product of
the individual sensitivities.

R
S4

S D C
S2

E1
C
S4

S2

Dual Cycle

We can also consider double cycles such as the one shown in Figure 13.13.
We can write out the stoichiometry matrix for the double cycle as:
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Figure 13.12 Two cycles in a cascade.

N D

24�1 1 0 0

1 �1 �1 1

0 0 1 �1

35
From this it is possible to show that there is one conservation law given by
the relation:

S1 C S2 C S3 D T

If we assume simple linear mass-action kinetics for each of the reactions,
simulation will reveal that the concentration of S3 shows sigmoid behavior
with respect to the stimulus signal S . We can assume that the stimulus
signal, S , operates on the rate constants, k1 and k3 by the same factor,
that is an increase in S by x% results in a change in k1 and k3 by x%.
What is of interest is that we no longer need non-linear kinetics to generate
sigmoidal behavior but can instead rely on only a small increase in the
complexity of the conservation laws.



322 CHAPTER 13. MOIETY CONSERVED CYCLES

1S 2S 3S

v1 v3

v4v2

S

Figure 13.13 Two cycles connected by a common intermediate, S2. The
rate laws for each step is given by v1 D k1S1, v2 D k2S2, v3 D k3S2,
v4 D k4S3. S is the stimulus signal which acts by increasing k1 and k3
by the same factor.

C
S3

S D
S1."

3
2 C "

2
2/C S2"

1
1

S1"
2
2"
4
3 C S2"

1
1"
4
2 C S3"

1
1"
3
2

(13.4)

If we assume all reactions are first-order then all the elasticities equal one.
Under these conditions the above equation reduces to:

C
S3

S D
2S1 C S2

S1 C S2 C S3

This shows that given the right ratios for S1, S2 and S3, it is possible for
C
S3

S > 1. Therefore unlike the case of a single cycle where near satu-
ration is required to achieve ultrasensitivity, multiple cycles can achieve
ultrasensitivity with simple linear kinetics

The cyclic models considered here assume negligible sequestration of the
cycle species by the catalyzing kinase and phosphatase. In reality this is
not likely to be the case because experimental evidence indicates that the
concentrations of the catalyzing enzymes and cycle species are compara-
ble (See [7] for a range of illustrative data). In such situations additional
effects are manifest [21, 70], of particular interest is the emergence of new
regulatory feedback loops which can alter the behavior quite markedly
(See [57] and [61]).
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A
Kinetics in a Nutshell

Definition

Reaction Kinetics is the study of how fast chemical reactions take place,
what factors influence the rate of reaction and what mechanisms are re-
sponsible.

Stoichiometric Amount

This is defined as the number of molecules of ap articular reactant or prod-
uct taking part in a reaction.

Depicting Reactions

aAC bB C : : :!CpP C qQC : : :

where a; b; : : : are stoichiometric amounts.
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Rates of Change

The rate of change is defined as the rate of change in concentration or
amount of a designated molecular species.

Rate Of Change D
dS

dt

Stoichiometric coefficients

The stoichiometric coefficient, ci , for a molecular species Aj , is the dif-
ference between the molar amount of the species on the product side and
the molar amount of the species on the reactant side.

ci D Molar Amount of Product �Molar Amount of Reactant

In the reaction, 2A �! B , the molar amount of A on the product side is
zero while on the reactant size it is two. Therefore the stoichiometric coef-
ficient of A is given by 0�2 D �2. In many cases a particular species will
only occur on the reactant or product side and it is not to common to find
situations where a species occurs simultaneously as a product and a reac-
tant. As a result, reactant stoichiometric coefficients tend to be negative
while product stoichiometric coefficients tend to be positive.

Reaction Rates

The reaction rate, often denoted by the symbol v, is measured with respect
to a given molecular species normalized by the species’ stoichiometric co-
efficient. This definition ensures that no matter which molecular species
in a reaction is measures, the reaction rate is uniquely defined for that re-
action. More formally the reaction rate for the given reaction:

aAC bB C : : :! pP C qQC : : :

v D
1

ca

dA

dt
D �

1

cb

dB

dt
: : : D

1

cp

dP

dt
D

1

cq

dQ

dt
: : :
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where cx are the stoichiometric coefficients. Alternative we can write the
rate of change in terms of the reaction rate as follows:

dA

dt
D cav (A.1)

Elementary mass-action kinetics

An elementary reaction is one that cannot be broken down into simpler
reactions. Such reaction will often have simple kinetics called mass-action
kinetics. For a reaction of the form

aAC bB C : : :!CpP C qQC : : :

the mass-action kinetic rate law is given by:

v D k1A
aBb : : : � k2P

pQq : : :

where k1 and k2 are the forward and reverse rate constants respectively.

Chemical Equilibrium

In principle all reactions are reversible, meaning transformations can oc-
cur from reactant to product or product to reactant. The net rate of a re-
versible reaction is the difference between the forward and reverse rates.
At chemical equilibrium the forward and reverse rates are equal. Chemical
equilibrium is then given by:

B

A
D Keq (A.2)

This ratio has special significance and is called the equilibrium constant,
denoted byKeq . The equilibrium constant is also related to the ratio of the
rate constants, k1=k2. For a general reversible reaction such as:

aAC bB C : : :
 pP C qQC : : :
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and using arguments similar to those described above, the ratio of the rate
constants can be easily shown to be:

Keq D
P pQq : : :

AaBb : : :
D
k1

k2
(A.3)

where the exponents are the stoichiometric amounts for each species.

Mass-action and Disequilibrium Ratio

Although in closed systems, reactions will tend to equilibrium, reactions
occurring in living cells are generally out of equilibrium and the ratio of
the products to the reactants in vivo is then called by the mass-action ratio,
� . The ratio of the mass-action ratio to the equilibrium constant is often
called the disequilibrium ratio:

� D
�

Keq
(A.4)

At equilibrium, the mass-action ratio will be equal to the equilibrium con-
stant and � D 1. If the reaction is away from equilibrium (B=A < Keq)
then � < 1.

For a simple unimolecular reaction it was shown previously that the equi-
librium ratio of product to reactant, B=A, is equal to the ratio of the for-
ward and reverse rate constants. Substituting this into the disequilibrium
ratio gives:

� D �
k2

k1
D
B

A

k2

k1

Therefore

� D
vr

vf
(A.5)

That is the disequilibrium ratio is the ratio of the reverse and forward rates.
If � < 1, then the net reaction must in the direction of product formation.
If � is zero then the reaction is as out of equilibrium as possible with no
product present.
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Modified Mass-Action Rate Laws

A typical reversible mass-action rate law will require both the forward and
the reverse rate constants to be fully defined. Often however, only one rate
constant may be known. In these circumstances it is possible to express
the reverse rate constant in terms of the equilibrium constant.

For example, given the simple unimolecular reaction, A 
 B . it is possi-
ble to derive the following:

v D k1A � k2B

v D k1A

�
1 �

k2B

k1A

�
Since Keq D

k1

k2

v D k1A

�
1 �

�

Keq

�
(A.6)

where � is the mass-action ratio. This can be generalized to an arbitrary
mass-action reaction to give:

v D k1A
aBb : : :

�
1 �

�

Keq

�
D k1A

aBb : : : .1 � �/

where AaBb : : : represents the product of all reactant species, a and b are
the corresponding stoichiometric amounts, and � is the disequilibrium
ratio. For example, for the reaction:

2AC B �! C C 2D

where k1 is the forward rate constant, the modified reversible rate law is:

v D k1A
2B .1 � �/

The modified formulation demonstrates how a rate expression can be di-
vided up into functional parts that include both kinetic and thermody-
namic components [37]. The kinetic component is represented by the term
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k1A
aBb : : : while the thermodynamic component is represented by the

expression 1 � �.

We can also derive the modified rate law in the following way. Given
the net rate of reaction v D vf � vr , we can write this expression in the
following way:

v D vf

�
1 �

vr

vf

�
That is:

v D vf .1 � �/



B
Enzyme Kinetics in a Nutshell

Enzymes

Enzymes are protein molecules that can accelerate a chemical reaction
with changing the equilibrium constant of the reaction of themselves.

Enzyne Kinetics

Enzyme kinetics is a branch of science that deals with the many factors
that can affect the rate of an enzyme-catalysed reaction. The most impor-
tant factors include the concentration of enzyme, reactants, products, and
the concentration of any modifiers such as specific activators, inhibitors,
pH, ionic strength, and temperature. When the action of these factors is
studied, we can deduce the kinetic mechanism of the reaction. That is, the
order in which substrates and products bind and unbind and the mechanism
by which modifiers alter the reaction rate.
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Michaelis-Menten Kinetics

The standard model for enzyme action, describes the binding of free en-
zyme to the reactant forming an enzyme-reactant complex. This complex
undergoes a transformation, releasing product and free enzyme. The free
enzyme is then available for another round of binding to new reactant.

E C S
k1
��*)��
k�1

ES
k2
�! E C P (B.1)

where k1; k�1 and k2 are rate constants, S is substrate, P is product, E is
the free enzyme, and ES the enzyme-substrate complex.

By either assuming rapid equilibrium between enzyme, substrate and the
substrate complex, or assuming a steady state condition on the enzyme
substrate complex, an aggregate rate law, often called the Michaelis-Menten
equation in the case the rapid equilibrium assumption or the Briggs-Haldane
equation when using the steady state assumption is given by:

v D
Vm S

Km C S
(B.2)

where Vm is the maximal velocity and KMm the substrate concentration
that yield have the maximum velocity.

Product Inhibition

Reversible Rate laws

An alternative and more realistic model is the reversible form:

E C S
k1
��*)��
k�1

ES
k2
��*)��
k�2

E C P (B.3)

The aggregate rate law for the reversible form of the mechanism can also
be derived and is given by:
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Figure B.1 Relationship between the initial rate of reaction and substrate
concentration for a simple Michaelis-Menten rate law. The reaction rate
reaches a limiting value called the Vm. Km is set to 4.0 and Vm to 1.0. The
Km value is the substrate concentration that gives half the maximal rate.

v D
Vf S=KS � Vr P=KP

1C S=KS C P=KP
(B.4)

Haldane Relationship

For the reversible enzyme kinetic law there is an important relationship:

Keq D
Peq

Seq
D
Vf KP

Vr KS
(B.5)

and shows that the four kinetic constants, Vf ; Vr ; KP andKS are not inde-
pendent. Haldane relationships can be used to eliminate one of the kinetic
constants by substituting the equilibrium constant in its place. This is use-
ful because equilibrium constants tend to be known compared to kinetic
constants. By incorporating the Haldane relationship we can eliminate the
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reverse maximal velocity (Vr ) to yield the equation:

v D
Vf =KS .S � P=Keq/

1C S=KS C P=KP
(B.6)

Separating out the terms makes it easier to see that the above equation can
be partitioned into a number of distinct terms:

v D Vf � .1 � �=Keq/ �
S=Ks

1C S=KS C P=KP
(B.7)

where � D P=S . The first term, Vf is the maximal velocity; the second
term, .1 � �=Keq/ indicates the direction of the reaction according to
thermodynamic considerations and the last terms refers to the fractional
saturation with respect to substrate. We thus have a maximal velocity, a
thermodynamic term and a saturation term. We will see this breakdown
into distinct terms repeatedly as we consider other enzyme kinetic rate
laws.

Competitive Inhibition

There are many molecules capable of slowing down or speeding up the
rate of enzyme catalyzed reactions. Such molecules are called enzyme in-
hibitors and activators. One common type of inhibition, called competitive
inhibition, occurs when the inhibitor is structurally similar to the substrate
so that it competes for the active site by forming a dead-end complex.

The kinetic mechanism for a pure competitive inhibitor is shown in Fig-
ure B.2(a), where I is the inhibitor and EI the enzyme inhibitor complex.
If the substrate concentration is increased, it is possible for the substrate
to eventually out compete the inhibitor. For this reason the inhibitor alters
the enzyme’s apparent Km but not the Vm.

v D
Vm S

S CKm

�
1C

I

Ki

�

D
Vm S=Km

1C S=Km C I=Ki

(B.8)
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a) Competitive Inhibition

E ES

EI

E + P

b) Uncompetitive Inhibition

E E + PES

ESI

Figure B.2 Competitive and uncompetitive inhibition. P is the concentra-
tion of product, E is the free enzyme, ES the enzyme-substrate complex,
and ESI the enzyme-substrate-inhibitor complex.

At I D 0, the competitive inhibition equation reduces to the normal irre-
versible Michaelis-Menten equation. Note that the termKm.1C I=Ki / in
the first equation more clearly shows the impact of the inhibitor, I , on the
Km. The inhibitor has no effect on the Vm.

The reversible form of the competitive rate law can be derived from equa-
tion (??) by setting a� 1 and b D 0 and is shown below:

v D

Vm

Ks

�
S �

P

Keq

�
1C

S

Ks
C
P

Kp
C

I

Ki

(B.9)

where Vm is the forward maximal velocity, andKs andKp are the substrate
and product half saturation constants.

Sometimes reactions appear irreversible, that is no discernable reverse rate
is detected, and yet the forward reaction is influenced by the accumulation
of product. This effect is caused by the product competing with substrate
for binding to the active site and is often called product inhibition. Given
that product inhibition is a type of competitive inhibition we will briefly
discuss it here. An important industrial example of this is the conversion
of lactose to galactose by the enzyme ˇ�galactosidase where galactose
competes with lactose, slowing the forward rate [26].

To describe simple product inhibition with rate irreversibility, we can set
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the P=Keq term in the reversible Michaelis-Menten rate law (B.4) to zero.
This yields:

v D
VmS

S CKm

�
1C

P

Kp

� (B.10)

It is not surprising to discover that equation (B.10) has exactly the same
form as the equation for competitive inhibition (B.8). Figure ?? shows
how the reaction rate responds to increasing product concentration at a
fixed substrate concentration. As the product increases, it out competes
the substrate and therefore slows down the reaction rate.

We can also derive the equation by using the following mechanism and the
rapid equilibrium assumption:

E C S �*)� ES �! EP �*)� E C P (B.11)

where the reaction rate, v / ES.

Cooperativity

Many proteins are known to be oligomeric, that is they are composed of
more than one identical protein subunit where each subunit has one or more
binding sites. Often the individual subunits are identical.

If the binding of a ligand (a small molecule that binds to a larger macro-
molecule) to one site alters the affinity at other sites on the same oligomer
then this is called cooperativity. If ligand binding increases the affinity of
subsequent binding events, it is termed positive cooperativity whereas if
the affinity decreases then it is termed negative cooperativity. One char-
acteristic of positive cooperativity is that it results in a sigmoidal response
instead of the usual hyperbolic response.

The simplest equation that displays sigmoid like behavior is the Hill equa-
tion:
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v D
Vm Sn

Kd C S
n

(B.12)

One striking feature of many oligomeric proteins is the way individual
monomers are physically arranged. Often one will find at least one axis
of symmetry. The individual protein monomers are not arranged in a hap-
hazard fashion. This level of symmetry may imply that the gradual change
in the binding constants as ligands bind, as suggested by the Adair model,
might be physically implausible. Instead one might envisage transitions to
an alternative binding state that occurs within the entire oligomer complex.
The original authors laid out the following criteria for the MWC model:

1. The protein is an oligomer.

2. Oligomers can exist in two states: R (relaxed) and T (tense). In each
state, symmetry is preserved and all subunits must be in the same
state for a given R or T state.

3. The R state has a higher ligand affinity than the T state.

4. The T state predominates in the absence of ligand S .

5. The ligand binding microscopic association constants are all identi-
cal, this is in complete contrast to the Adair model

Given these criteria, the MWC model assumes that an oligomeric enzyme
may exist in two conformations, designated T (tensed, square) and R (re-
laxed, circle) with an equilibrium between the two states with equilibrium
constant, L D T=R, also called the allosteric constant. If the binding con-
stants of ligand to the two states are different, then the distribution of the R
and T forms can be displaced either towards one form or the other. By this
mechanism, the enzyme displays sigmoid behavior. A minimal example
of this model is shown in Figure B.3.

In the exclusive model (Figure B.3), the ligand can only bind to the re-
laxed form (circle). The mechanism that generates sigmoidicity in this
model works as follows. When ligand binds to the relaxed form it dis-
places the equilibrium from the tense form to the relaxed form. In doing
so, additional ligand binding sites are made available. Thus one ligand
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L

L = 

Figure B.3 A minimal MWC model, also known as the exclusive model,
showing alternative microscopic states in the circle (relaxed) form. L is
called the allosteric constant. The square form is called the tense state.

binding may generate four or more new binding sites. Eventually there
are no more tense states remaining at which point the system is saturated
with ligand. The overall binding curve will therefore be sigmoidal and
will show positive cooperativity. Given the nature of this model, it is not
possible to generate negative cooperativity. By assuming equilibrium be-
tween the various states it is possible to derive an aggregate equation for
the dimer case of the exclusive MWC model:

v D Vm

S

kR

�
1C

S

kR

�
�
1C

S

kR

�2
C L

This also generalizes to n subunits as follows:

Y D

S

kR

�
1C

S

kR

�n�1
�
1C

S

kR

�n
C L

(B.13)

For more generalized a reversible rate laws the exhibit sigmoid behavior
the reversible Hill equation is a good option to use.
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Invoking the rapid-equilibrium assumption we can write the various com-
plexes in terms of equilibrium constants to give:

v D
Vf ˛ .1 � �/ .˛ C �/

1C .˛ C �/2

where � D �=Keq . For an enzyme with h (using the authors original
notation) binding sites, the general form of the reversible Hill equation is
given by:

v D
Vf ˛ .1 � �/ .˛ C �/

h�1

1C .˛ C �/h
(B.14)

Allostery

An allosteric effect is where the activity of an enzyme or other protein is
affected by the binding of an effector molecule at a site on the protein’s
surface other than the active site. The MWC model described previously
can be easily modified to accomodate allosteric action.

L

L = 

R2T2
R  X2

R  X2

R  X2 2

=
T2

R2

X

X

X X

Figure B.4 Exclusive MWC model based on a dimer showing alternative
microscopic states in the form of T and R states. The model is exclusive
because the ligand, X , only binds to the R form.

The key to including allosteric effectors is the equilibrium between the
tense (T) and relaxed (R) states (See Figure B.4). To influence the sig-
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moid curve, an allosteric effector need only displace the equilibrium be-
tween the tense and relaxed forms. For example, to behave as an activator,
an allosteric effector needs to preferentially bind to the R form and shift
the equilibrium away from the less active T form. An allosteric inhibitor
would do the opposite, that is bind preferentially to the T form so that the
equilibrium shifts towards the less active T form. In both cases the Vm of
the enzyme is unaffected.

The net result of this is to modify the normal MWC aggregate rate law to
the following if the effector is an inhibitor:

v D Vm
˛ .1C ˛/n�1

.1C ˛/n C L.1C ˇ/n
(B.15)

where ˛ D S=Ks and ˇ D I=KI . Ks andKI are kinetic constants related
to each ligand. A MWC model that is regulated by other an inhibitor and
an activator is represented by:

v D Vm
˛ .1C ˛/n�1

.1C ˛/n C L
.1C ˇ/n

.1C 
/n

There are also reversible forms of the allosteric MWC model but is fairly
complex. Instead it is possible to modify the reversible Hill rate law to
include allosteric ligands.

v D

Vf ˛

�
1 �

�

Keq

�
.˛ C �/h�1

1C �h

1C ��h
C .˛ C �/h

(B.16)

where

� < 1 inhibitor

� > 1 activator



C
Math Fundamentals

C.1 Notation

Sum and Product:

a1 C a2 C a3 C : : :C an D

nX
iD1

ai

a1 � a2 � a3 � : : : � an D

nY
iD1

ai

Vectors and Matrices:

Bold lower case letters indicate vectors, for example: v; s

Bold upper case letters indicate matrices, for example: N;X .
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Derivatives:

One the left is Leibniz’s notation and on the right Lagrange’s notation:

df

dx
� f 0.x/

d2f

dx2
� f 00.x/

dnf

dxn
� f .n/.x/

C.2 Short Table of Derivatives

d

dx
Œc� D 0

d

dx
Œx� D 1

d

dx
Œcu� D c

du

dx

d

dx
ŒuC v� D

du

dx
C
dv

dx

d

dx
Œuv� D u

dv

dx
C v

du

dx

d

dx
Œu=v/� D

v du
dx
� u dv

dx

v2

d

dx
Œun� D nun�1

du

dx

d

dx
Œf .u/� D

df

du
f .u/

du

dx

d

dx
Œlnu� D

1

u

du

dx

deu

dx
D eu

du

dx

d

dx
Œsin.u/� D cos.u/

du

dx

d

dx
Œcos.u/� D � sin.u/

du

dx
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C.3 Logarithms

log.AB/ D log.A/C log.B/

log.A=B/ D log.A/ � log.B/

log.An/ D n log.A/

xn � xm D xnCm

xn

nm
D xn�m

.xn/m D xn�m

C.4 Partial Derivatives

If the value of a given function depends on two variables then we write this
function in the form:

u D f .x; y/

If it is possible to change x without affecting y then x and y are called
independent variables. The rate of change of u with respect to x when x
varies but y remains constant is called the partial derivative of u with
respect to x. Partial derivatives are denoted using the partial symbol, @.
That is the partial derivative of u with respect to x is:

@u

@x

Likewise the partial derivative of u with respect to y is given by:

@u

@y

To find a partial derivative, we simply differentiate with respect to the vari-
able of interest while treating the remaining variables as constants. For
example, the reaction rate for a given reaction is v D k1S � k2P , where
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S is the reactant, P the product and k1 and k2 the rate constants. In a
controlled environment we should in principle be able to change S and P
independently. Therefore we can write down the partial derivatives of the
reaction rate with respect to S and P as follows:

@v

@S
D k1

@v

@P
D �k2

In order to indicate what variables are kept constant in the partial derivative
the following notation is sometimes used, particulary in thermodynamics:�

@v

@S

�
P

D k1�
@v

@P

�
S

D �k2

Or for function with many variables, x; y; z; : : :, the notation would extend
to: �

@u

@x

�
y;z;:::

Like derivatives, partial derivatives are defined in terms of a limit. For
example the partial derivatives for the function, f .x; y/ are defined as:

@f .x; y/

@x
D lim
h!0

f .x C h; y/ � f .x; y/

h

@f .x; y/

@y
D lim
h!0

f .x; y C h/ � f .x; y/

h

The graphical interpretation of a partial derivative, @f .x; y/=@x is that it
represents the slope of the function, f .x; y/ in the x direction.
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C.5 Differential Equations

Differential equations are equations that contain derivatives. For example,
the following is a differential equation:

dy

dx
C y2 D 0

An ordinary differential equation is where the derivatives are functions
of the same variable. For example, the following equations are ordinary
differential equations:

dy

dx
D ay

dy

dx
D 2x C 3y � 8

d2y

dx2
� x

du

dx
D 0

A differential equation expressed in terms of the first derivative (dy=dx)
is called a first-order differential equation. A differential equation that
is expression in terms of second order derivatives (d2y=dx2) is called a
second-order differential equation. When solving differential equations
the objective is to find the function y.x/ such that when differentiated
gives the original differential equation. For example the solution to:

dy

dx
D ay

is
y D yoe

ax (C.1)

If we differentiate the solution (C.1) we get back the original differential
equation.

Differential equations are used very often to model physical systems where
they describe the rate of change of some variable with respect to time, t .
The reason why they are used is because we may not explicitly know the
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solution y.t/ but we will often know the rate of change the variable has
at any given moment in time, dy=dt . This means we can at least obtain a
numerical solution to y.t/ even if the analytical solution is unobtainable.

Differential equations can be further classified as autonomous or non-
autonomous. Autonomous differential equations are the most common
in biochemical models. These equations do not depend on time, that is
the right-hand side of the differential equation has no terms relating ex-
plicitly to time. For example equation C.2 is autonomous equation C.3 is
non-autonomous:

dx

dt
D x2 C 10 (C.2)

dx

dt
D x2 C t � 5 (C.3)

A partial differential equation is one where the derivatives are functions
of more than one derivative. For example the equation is a partial differen-
tial equation:

@u

@t
C u

@u

@x
D
@p

@x

Note the use of the partial d (@) in the partial differential equation to in-
dicate that the function u is differentiated with respect to more than one
variable. The partial derivative also indicates than when a derivative is
made, other other constants are assumed to be held constant.

C.6 Taylor Series

Expressions like 1C2xC6x2 and 2C4xCx2�3x3 that consist of the sum
of a number of terms raised to a positive power are called polynomials. The
only operations allowed in a polynomial are addition, subtraction, multipli-
cation and non-negative integer powers. One of the simplest polynomials
is the straight line, y D a C bx, termed a polynomial of first degree. The
coefficients, a and b can be chosen so that the line will pass through any
two points. That is we can express any straight line using y D a C bx.
Similarly for a polynomial of second degree, y D aCbxCcx2, a parabola,
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we can choose the constants, a; b and c so that the curve can pass through
any three points.

It follows that we can find a polynomial equation of nth degree that will
pass through any n C 1 points. If the polynomial has an infinite number
of terms, then we can imagine that the polynomial can be made to follow
any function, f .x/ by suitable adjustment of the polynomial coefficients.
Although this statement may not always be true, in many cases it is which
makes the polynomial series very useful.

A polynomial of infinite degree is called a polynomial series:

f .x/ D co C c1x C c2x
2
C c3x

3
C : : :

The question is, how can we find the polynomial series that will represent
a given function, for example sin.x/? To answer this we have to determine
the constants, co; c1 etc. in the polynomial equation. Let us assume that
we wish to know the value of sin.x/ at x D 0 using a polynomial series.
At x D 0, all terms vanish except for co, therefore at x D 0:

f .0/ D co

We can therefore interpret the first constant, co as the value of the function
at x D 0. What about c1? Let us take the derivative of the series, that is:

f 0.x/ D c1 C 2c2x C 3c3x
2
C : : :

If we set x D 0, we find that:

f 0.0/ D c1

That is the second constant, c1, in the polynomial series is the first deriva-
tive of the function. If we take the second derivative we can also show that
at x D 0; f 00.x0/ D 2c2, that is c2 D f 00.0/=2. For the third derivative
we can show that f 000.0/ D 3.2/c3, that is c3 D f 000.0/=.3Š/. This pattern
continues for the remaining terms in the polynomial so that we can now
write:

f .x/ D f .0/C f 0.0/x C
f 00.0/

2Š
x2 C

f 000.0/

3Š
x3 C : : :
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Function Second order approximation
1
1Cx

1C x C x2

p
1C x 1C x

2
C

x2

8

sin.x/ x

Table C.1 Examples of common approximations

This series is called the Maclaurin series for the function, f .x/. It ap-
proximates the function around the specific value of x D 0. To illustrate
the use of the Maclaurin series consider expanding sin.x/ around x D 0.
f .0/ will equal sin.0/ D 0. f 0.0/ D cos.0/ D 1 and so on. We can
therefore write the series as:

sin.x/ D 0C 1x C 0 �
1

3Š
x3 C 0C

1

5Š
x5 � : : :

sin.x/ D x �
x3

3Š
C
x5

5Š
� : : :

What if we wanted to approximate a function about an arbitrary value of
x? To do this we would use the Taylor series which is a generalization of
the Maclaurin series. The Taylor series is defined by:

f .x/ D f .xo/C
@f

@xo
.x � xo/C

1

2Š

@2f

@x2o
.x � xo/

2

C : : :C
1

nŠ

@nf

@xno
.x � xo/

n
C : : : (C.4)

where the approximation is now centered on xo. If we set xo equal to zero
we will obtain the Maclaurin series.

C.7 Total Derivative

Consider the function:

f .t/ D f .x.t/; y.t//
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The derivative of f .t/ with respect to t , is given by the chain rule:

df

dt
D
@f

@x

dx

dt
C
@f

@y

dy

dt

Note the use of partial derivatives. This equation is often abbreviated to:

df D
@f

@x
dx C

@f

@y
dy

where it is called the total derivative. Often the variable, t is not speci-
fied in the total derivative. Operationally the total derivative computes the
change in f , given small changes in x and y.

C.8 Eigenvalues and Eigenvectors

A square matrix such as A can be use to transform a given vector, v in
specific ways. For example, if the matrix A is:�

2 0

0 4

�
then the result of multiplying A into v will yield a vector that is similar to
v but where the first element is scaled by 2 and the second element by 4.

For an arbitrary square matrix, if it is possible to find a vector v such than
when we multiple the vector by A we get a scaled version of v, then we
call the vector v the eigenvector ofA and the scaling value, the eigenvalue
ofA. For a matrix of dimension n, there will be at most n eigenvalues and
n eigenvectors. In the case of the simple example above the eigenvalues
must be 2 and 4 respectively while the two eigenvector will be:�

˛

0

� �
0

˛

�
The definition of an eigenvector and eigenvalue is often given in the form:

Av D �v
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We can rearrange this equation as follows:

Av D �Iv

Av � �Iv D 0

.A � �I/v D 0

From linear algebra we know that there will be non-zero solutions to .A�
�I/v D 0 if det.A � �I/ D 0. We can use this observation to compute
the eigenvalues and eigenvectors of a matrix. For example consider the
matrix: �

3 6

1 4

�
Computing A � �I yields:

A � �I D

"
3 � � 6

1 4 � �

#
det.A � �I/ D .3 � �/.4 � �/ � 6

D �2 � 7�C 6

D .� � 6/.� � 1/

The eigenvalues are therefore 6 and 1. With two eigenvalues there will be
two eigenvectors. First we consider � D 6.

.A � �I/v D 0��
3 6

1 4

�
�

�
6 0

0 6

��
v D 0�

�3 6

1 �2

�
v D 0

By inspection we can see that the eigenvector is:�
2

1

�
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satisfied this equation. Likewise we can do the same for the other eigen-
value, � D 1 where the corresponding eigenvector is found to be:�

�3

1

�

Further Reading

1. Smail LL (1953) Analytical Geometry and Calculus. Appleton-
Century-Crofts ISBN: 978-0982477311
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D
Control Equations

D.1 Linear Pathways

Two Step pathway

Xo S1 X1
v1 v2

Figure D.1 Two Step Pathway.

C JE1
D

"2S

"2S � "
1
S

C JE2
D �

"1S

"2S � "
1
S
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C
S1

E1
D

1

"2S � "
1
S

C
S1

E2
D �

1

"2S � "
1
S

Three Step pathway

Xo S1 S2 X1
v1 v2 v3

Figure D.2 Three Step Pathway.

The denominator, D is given by:
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Xo S1 S2 X1
v1 v2 v3

Figure D.3 Three Step Pathway.
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Three Step pathway with Feedforward Loop

Xo S1 S2 X1
v1 v2 v3

Figure D.4 Three Step Pathway.
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D.2 Cycles

S1 S2

v2

v1

A B

D C

Figure D.5 Simple Conserved cycle where S1 C S2 D constant DMt .

C
S2

E1
D

S1
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D.3 Branches

Xo S1

X1

X2

v1
v2

v3

Figure D.6 Three Step Pathway.
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Let ˛ D v2

v1
.

C
J2

E1
D

"2

"2˛ C "3.1 � ˛/ � "1
> 0

C
J2

E2
D

"3.1 � ˛/ � "1

"2˛ C "3.1 � ˛/ � "1
> 0

C
J2

E3
D

�"2.1 � ˛/

"2˛ C "3.1 � ˛/ � "1
< 0

And for the concentration control coefficients:

CSE1
D

1

"2˛ C "3.1 � ˛/ � "1

CSE2
D

�˛

"2˛ C "3.1 � ˛/ � "1

CSE3
D

�.1 � ˛/

"2˛ C "3.1 � ˛/ � "1
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E
Modeling with Python

In this appendix a brief description of the Python programming language
will be given plus a brief introduction to the Antimony reaction network
format and libRoadRunner.

Python Python is an easy to learn general purpose interactive program-
ming language. It has similar usability characteristics to Matlab or
Basic. As such it is a good language to use for doing pathway sim-
ulations and is easily learned by new users. In recent years Python
has also become more widely used as a general purpose scientific
programming language and now supports many useful libraries and
tools for modelers. All the scripts we provide in this book are written
in Python.

Antimony SBML has become a de facto standard for exchanging models
of biological pathways. Any tool we use should therefore be able
to support SBML. However SBML is a computer readable language
and it is not easy for humans to read or write SBML. Instead more
human readable formats have been developed. In this text book we

359
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will be using the Antimony pathway description language [?]. Mod-
els can be described in Antimony then converted to SBML or vice
versa.

libRoadRunner To support SBML from within Python we developed a
C/C++ simulation library called libRoadRunner [?] that can read and
run models based on SBML. In order to use libRoadRunner within
Python, we also provide a Python interface that makes it easy to
carry out simulations with Python.

Spyder Integration of the various tools including Python is achieved by
using spyder2 (https://code.google.com/p/spyderlib/). Spy-
der2 offers a Matlab like experience in a friendly, cross-platform
environment.

E.1 Introduction to Python

One great advantage of the Python language is that is runs on many com-
puter platforms, most notably Windows, Mac and Linux and is freely
downloadable from the Python web site. To execute Python code we
will need access to what is often referred to as a Python IDE (Integrated
Development Environment). In the Python world there are many IDEs
to choose from, ranging from very simple consoles to sophisticated de-
velopment systems that includes documentation, debuggers and other vi-
sual aids. In this book we use the cross-platform IDE called spyder2
(https://code.google.com/p/spyderlib/).

The best way to learn Python is to download a copy and start using it. We
have prepared installers that install all the relevant components you need,
these can be found at tellurium.analogmachine.org. The Tellurium
distribution includes some additional helper routines which can make life
easier for new users. The Tellurium version can be downloaded for Mac
and Windows computers. We will use the Windows version here. To down-
load the installer go to the web site tellurium.analogmachine.org,
and click on the first link you see called Download Windows version here.
Run the installer and follow the instructions.

https://code.google.com/p/spyderlib/
https://code.google.com/p/spyderlib/
tellurium.analogmachine.org
tellurium.analogmachine.org
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Once Tellurium is installed go to the start menu, find Tellurium and select
the application call Tellurium spyder. If successful you should see some-
thing like the screen shot in Figure E.1 but without the plotting window.
The screen-shot shows three important elements, on the left we see an ed-
itor, this is where models can be edited. On the lower right is the Python
console where Python commands can be entered. At the top right we show
plotting window that illustrates some output from a simulation. For those
familiar with IPython, the latest version of spyder2 supports the IPython
console directly.

Figure E.1 Screen-shot of Tellurium, showing editor on the left, Python
console bottom right and plotting window top-right.

Once you have started the Tellurium IDE, let us focus on the Python con-
sole at the bottom right of the application. A screen-shot of the console is
shown in Figure E.2.

The >>> symbol marks the place where you can type commands. The
following examples are based on Python 2.7. To add two numbers, say 2
+ 5, we would type the following:
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Figure E.2 Screen-shot of Tellurium, focusing on the Python console.

>>> print 2 + 5

7

>>>

Listing E.1 Simple Arithmetic

Just like Matlab or Basic we can assign values to variables and use those
variables in other calculations:

>>> a = 2

>>> b = 5

>>> c = a + b

>>> print c

7

>>>

Listing E.2 Assigning values to variables

The types of values we can assign to variables include values such as in-
tegers, floating point numbers, Booleans (True or False), strings and com-
plex numbers.

>>> a = 2

>>> b = 3.1415

>>> c = False

>>> d = "Hello Python"

>>> e = 3 + 6j

>>>

Listing E.3 Different kinds of values
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Many functions in Python are accessible via modules. For example to
compute the sin of a number we can’t simply type sin (30). Instead we
must first load the math module. We can then call the sin function:

>>> import math

>>> print sin (3.1415)

9.265358966049026e-05

>>>

Listing E.4 Importing modules (libraries) into Python

In Tellurium we preload some libraries including the math library.

Repeating Calculations

One of the commonest operations we do in computer programming is it-
eration. We can illustrate this with a simple example that loops ten times,
each time printing out the loop index. This example will allow us to intro-
duce the IDE editor. The editor is the panel on the left side of the IDE. In
the editor we can type Python code, for example we could type:

a = 4.0

b = 8.0

c = a/b

print "The answer is:", c

Listing E.5 Writing a simple program in the IDE editor

When we’ve finished typing this in the editor window, we can save our
little program to a file (Select Menu: File/Save As...) and run the program
by clicking on the green arrow in the tool bar of the IDE (Figure E.3). If
we run this program we will see:

The answer is: 0.5

>>>

Listing E.6 Writing a simple program in the IDE editor



364 APPENDIX E. MODELING WITH PYTHON

Figure E.3 Screen-shot of Tellurium, focusing on the Toolbar with the run
button circled.

The IDE allows a user to have as many program files open at once, each
program file is given its own tab so that it is easy to move from one to the
other. This is useful if one is working on multiple models at the same time.

We will now use the editor to write the simple program that loops ten times,
this is shown below:

for i in range (10):

    print i,

Listing E.7 A simple loop in python

This will generate the sequence:

0 1 2 3 4 5 6 7 8 9

Listing E.8 Result from simple loop program

There are a number of new concepts introduced in this small looping pro-
gram. The first line contains the for keyword can be translated into literal
English as “for all elements in a list, do this”. The list is generated from
the range() function and in this case generates a list of 10 numbers start-
ing at 0. i is the loop index and within the loop, i can be used in other
calculations. In this case we will just print the value of i to the console.
Each time the program loops it extracts the next value from the list and
assigns it to i.

Two things are important to note in the print line. The first and most impor-
tant is that the line has been indented four spaces. This isn’t just for aes-
thetic reasons but is actually functional. It tells Python what code should
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be executed within the loop. To elaborate we could add more lines to the
loop, such as:

for i in range (10):

    a = i

    b = a*2

    print b,

print "Finished Loop"

Listing E.9 A simple loop illustrating multiple statements

In this example there are three indented lines, this means that these three
lines will be executed within the loop. The last line which prints a message,
is not indented and therefore will not be executed within the loop. This
means we only see the message appear once right at the end. The output
for this little program is shown below.

0 2 4 6 8 10 12 14 16 18 Finished Loop

Another important point worth noting is the use of the , after the loop
print statement. The comma is used to suppress a newline. This is why the
output appears on one line only. If we had left out the comma each print
statement would be on its own line.

A final word about range(). Range takes up to three arguments. In the
example we only gave one argument, 10. A single argument means create
a list starting at zero, incrementing one for each item until the incremented
value reaches 10. A second argument such as range (5, 10) means start
the list at 5 rather than zero. Finally, a third argument can be used to
specify the increment size. For example the command range (1, 10,

2) will yield the list:

[1, 3, 5, 7, 9]

The easiest way to try out the various options in range is to type them at
the console to get immediate feedback.

The use of variables, printing results, importing libraries and looping are
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probably the minimum concepts one needs to start using Python. However
there are a huge range of resources online to help learn Python. Of par-
ticular interest is the codecademy web site (http://www.codecademy.
com/). This site offers an interactive means to learn Python (including
other programming languages).

E.2 Describing Reaction Networks using Antim-
ony

The code shown in the panel below illustrates the description of a very sim-
ple model using the Antimony syntax [?] followed by two lines of Python
that uses libRoadRunner to run a simulation of the model. In this section
we will briefly describe the Antimony syntax. A more detailed description
of Antimony can be found at http://antimony.sourceforge.net/

index.html.

import tellurium as te

rr = te.loada ('''

  S1 -> S2; k1*S1;

  S1 = 10; k1 = 0.1

''')

rr.simulate (0, 50, 100)

rr.plot()

Listing E.10 Simple model Antimony and simulated using libRoadRun-
ner

The main purpose of Antimony is to make it straight forward to specify
complex reaction networks using a familiar chemical reaction notation.

A chemical reaction can be an enzyme catalyzed reaction, a binding re-
action, a phosphorylation, a gene expressing a protein or any chemical
process that results in the conversion of one of more species (reactants) to
a set of one or more other species (products). In Antimony, reactions are
described using the notation:

http://www.codecademy.com/
http://www.codecademy.com/
http://antimony.sourceforge.net/index.html
http://antimony.sourceforge.net/index.html
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A + ... -> P + ...

where the reactants are on the left side and products on the right side. The
left and right are separated by the -> symbol. For example:

A -> B

describes the conversion of reactant A into product B. In this case one
molecule of A is converted to one molecule of B. The following example
shows non-unity stoichiometry:

2 A -> 3 B

which means that two molecules of A react to form three molecules of B.
Bimolecular and other combinations can be specified using the + symbol,
that is:

2 A + B -> C + 3 D

tells us that two molecules of A combine with one molecule of B to form
one molecule of C and three molecules of D.

To specify species that do not change in time (boundary species), add a
dollar character in front of the name, for example:

$A + B -> C

means that during a simulation A is fixed.

Reactions can be named using the syntax J1:, for example:

J1: A + B -> C

means the reaction has a name, J1. Named reaction are useful if you want
to refer to the flux of the reaction; kinetic rate laws come immediately after
the reaction specification. If only the stoichiometry matrix is required, it
is not necessary to enter a full kinetic law, a simple ... -> S1; v; is
sufficient. Here is an example of a reaction that is governed by a Michaelis-
Menten rate law:

A -> B; Vm*A/(Km + A);

Note the semicolons. Here is a more complex example involving multiple
reactions:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);
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BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

There is no need to pre-declare the species names shown in the reactions
or the parameters in the kinetic rate laws. Strictly speaking, declaring the
names of the floating species is optional, however this feature is for more
advanced users who wish to define the order of rows that will appear in the
stoichiometry matrix. For normal use there is no need to pre-declare the
species names. To pre-declare parameters and variables see the example
below:

const Xo, X1, X2; // Boundary species

var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

We can load an Antimony model into libRoadRunner using the short-cut
command loada. For example:

rr = te.loada ('''

const Xo, X1, X2; // Boundary species

var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

''')

To reference model properties and methods, the property or method must
be proceeded with the roadrunner variable. e.g. rr.S1 = 2.3;

When loaded into libRoadRunner the model will be converted into a set of
differential equations. For example, consider the following model:

$Xo -> S1; v1;

S1 -> S2; v2;

S2 -> $X1; v3;
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will be converted into:

dS1

dt
D v1 � v2

dS2

dt
D v2 � v1

Note that there are no differential equations forXo andX1. This is because
they are fixed and do not change in time. If the reactions have non-unity
stoichiometry, this is taken into account when the differential equations are
derived.

E.2.1 Initialization of Model Values

To initialize the concentrations and parameters in a model we can add as-
signments after the network is declared, for example:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

X0 = 3.4; X1 = 0.0;

S1 = 0.1;

Vm = 12; p.Km = 0.1;

Vm1 = 14; p.Km1 = 0.4;

Vm2 = 16; p.Km2 = 3.4;

E.3 Using libRoadRunner in Python

libRoadRunner is a high performance simulator [?] that can simulate mod-
els described using SBML. In order to use Antimony with libRoadRunner
it is necessary to first convert an Antimony description into SBML and then
load the SBML into libRoadRunner. Telluirum provides a handy routine
called loadAntimonyModel to help with this task (The short-cut name is
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loada). To load an Antimony model we first assign an Antimony descrip-
tion to a string variable, for example:

model = '''

S1 -> S2; k1*S1;

S1 = 10; k1 = 0.1;

'''

We now use the loadAntimonyModel (model) or loada to load the model
into libRoadRunner.

>>> rr = te.loadAntimonyModel (model)

Listing E.11 Loading an Antimony model

In this book we generally use the short-cut command as follows:

rr = te.loada ('''

    S1 -> S2; k1*S1;

    S1 = 10; k1 = 0.1;

 ''')

>>>

Listing E.12 Loading an Antimony model using the short-cut command

Note that loadAntimonyModel and loada are part of the Tellurium Python
package supplied with the Tellurium installer. If the Tellurium packages
hasn’t been loaded, use the following command to load the Tellurium pack-
age:

>>> import tellurium as te

Listing E.13 Importing the Tellurium Package
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E.3.1 Time Course Simulation

Once a model has been loaded into libRoadRunner, performing a simula-
tion is very straight forward. To simulate a model we use the libRoadRun-
ner simulate method. This method has many options but for everyday use
four options will suffice. The following panel illustrates a number exam-
ples of how to use simulate.

>>> result = rr.simulate ()

>>> result = rr.simulate (0, 10)

>>> result = rr.simulate (0, 10, 100)

>>> result = rr.simulate (0, 10, 100, ['time', 'S1'])

Listing E.14 Calling the simulate method

Argument Description

1st Start Time
2nd End Time
3rd Number of Points
4th Selection List

Let us focus on the forth version of the simulate method that takes four
arguments. This call will run a time course simulation starting at time
zero, ending at time 10 units, and generating 100 points. The results of the
run are deposited in the matrix variable, result. At the end of the run,
the result matrix will contain columns corresponding to the time column
and all the species concentrations as specified by the forth argument. The
forth argument can be used to change the columns that are returned from
the simulate method. For example:

>>> result = rr.simulate (0, 10, 1000, ['S1'])}

will return a matrix 1,000 rows deep and one column wide that corresponds
to the level of species S1.

Note that the special variable Time is available and represents the indepen-
dent time variable in the model.
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To visualize the output in the form of a graph, one can pass the matrix
of results to the plot command. In the following example we return one
species level, S1 and three fluxes. Finally we plot the results.

   result = rr.simulate (0, 10, 1000, ['Time', 'S1', 'J1', 'J2', 'J3']);

   te.plotWithLegend (rr, result)

or if we are not interested in the result data itself we can use the libRoad-
Runner plot:

   rr.simulate (0, 10, 1000, ['Time', 'S1', 'J1', 'J2', 'J3']);

   rr.plot()

It is possible to set the output column selections separately using the com-
mand:

rr.selections = ['time', 'S1']

This can save some typing each time a simulation needs to be carried out.
By default the selection is set to time as the first column followed by all
molecular species concentrations. As such it is more common to simply
enter the command:

>>> result = rr.simulate (0, 10, 50)

In fact even the start time and end time and number of points are optional
and if missing, simulate will revert to its defaults.

>>> result = rr.simulate()

E.3.2 Plotting Simulation Results

Tellurium comes with Matplotlib which is a common plotting package
used by many Python users. To simplify its use we provide two simple
plotting calls:
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te.plot (array)

te.plotWithLegend (rr, array)

The first takes the resulting array generated by a call to simulate and uses
the first column as the x axis and all subsequent columns as y axis data.
The second call takes the roadrunner variable as well as the array and does
the same kind of plot but this time adds a legend to the plot. We will use
the first plotting command in the next section where we merge together
multiple simulations.

E.3.3 Applying Perturbations to a Simulation

Often in a simulation we may wish to perturb a species or parameter at
some point during the simulation and observe what happens. One way
to do this in Tellurium is to carry out two separate simulations where a
perturbation is made in between the two simulations. For example, let’s
say we wish to perturb the species concentration for a simple two step
pathway and watch the perturbation decay. First, we simulate the model
for 10 time units; this gives us a transient and then a steady state.

import numpy # Required for vstack

import tellurium as te

rr = te.loada ('''

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

     Xo = 10; k1 = 0.3; k2 = 0.15;

''')

m1 = rr.simulate (0, 40, 50)

We then make a perturbation in S1 as follows:

rr.S1 = rr.S1 * 1.6

which increases S1 by 60%. We next carry out a second simulation:
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m2 = rr.simulate (40, 80, 50)

Note that we set the time start of the second simulation to the end time of
the first simulation. Once we have the two simulations we can combine
the matrices from both simulations using the Python command vstack

% Merge the two result array together

m = numpy.vstack ((m1, m2))

Finally, we plot the results, screen-shot shown in Figure E.4.

te.plotArray (m)

Figure E.4 Screen-shot from Matplotlib showing effect of perturbation in
S1.

E.3.4 Steady State and Metabolic Control

To evaluate the steady-state first make sure the model values have been
previously initialized, then enter the following statement at the console.

>>> rr.getSteadyState()

This statement will attempt to compute the steady state and return a value
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indicating how effective the computation was. It returns the norm of the
rate of change vector (i.e. sqrt (Sum of dydt)). The closer this is to zero,
the better the approximation to the steady state. Anything less that 10�4

usually indicates that a steady state has been found.

Once a steady state has been evaluated, the values of the metabolites will
be at their steady state values, thus S1 will equal the steady state concen-
tration of S1.

The fluxes through the individual reactions can be obtained by either refer-
encing the name of the reaction (e.g. J1), or via the short-cut commandrv.
The advantage to looking at the reaction rate vector is that the individ-
ual reaction fluxes can be accessed by indexing the vector (see example
below). Note that indexing is from zero.

>>> print rr.J1, rr.J2, rr.J3

3.4, ...

>>> for i in range (0, 2):

...    print rr.rv()[i]

3.4

etc

->

To compute control coefficients use the statement:

getCC (Dependent Measure, Independent parameter)

The dependent measure is an expression usually containing flux and metabo-
lite references, for example, S1, J1. The independent parameter must be
a simple parameter such as a Vmax, Km, ki, boundary metabolite (X0), or
a conservation total such as cm_xxxx. Examples include:

  rr.getCC ('J1', 'Vmax1')

  rr.getCC ('J1', 'Vm1') + rr.getCC ('J1', 'Vm2')

  rr.getCC ('J1', 'X0')

  rr.getCC ('J1', 'cm_xxxx')

To compute elasticity coefficients use the statement:

getEE (Reaction Name, Parameter Name)

For example:
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  rr.getEE ('J1', 'X0')

  rr.getEE ('J1', 'S1')

Since getCC and getEE are built-in functions, they can be used alone or
as part of larger expressions. Thus, it is easy to show that the response
coefficient is the product of a control coefficient and the adjacent elasticity
by using:

  R = rr.getCC ('J1', 'X0')

  print R - rr.getCC ('J1', 'Vm') * rr.getEE ('J1', 'X0')

To obtain the conservation matrix for a model use the model method,
getConservationMatrix. Note that in the Antimony text we use the
var word to predeclare the species so that we can set up the rows of the
stoichiometry matrix in a certain order if we wish. This allows us to obtain
conservation matrices with only positive terms.

import tellurium as te

rr = te.loada ('''

   var ES, S1, S2, E;

  J1: E + S1 -> ES; v;

  J2: ES -> E + S2; v;

  J3: S2 -> S1; v;

''')

print rr.getConservationMatrix()

print rr.fs()

# Output

[[ 1.  1.  1.  0.]

 [ 1.  0.  0.  1.]]

['ES', 'S1', 'S2', 'E']

The result given above indicates that the conservation relations, ES + S1

+ E and E + ES exist in the model. As a result, Tellurium would generate
two internal parameters of the form cm corresponding to the two relations.



E.4. GENERATING SBML AND MATLAB FILES 377

E.3.5 Other Model Properties of Interest

There are a number of predefined objects associated with a reaction net-
work model which might also be of interest. For example, the stoichiom-
etry matrix, sm, the rate vector rv, the species levels vector and dv which
returns the rates of change.

print rr.sm()

print rr.rv()

print rr.sv()

print rr.dv()

The names for the parameters and variables in a model can be obtained the
short-cuts:

print rr.fs() # List of floating species names

print rr.bv() # List of boundary species names

print rr.ps() # List of parameter names

print rr.rs() # List of reaction names

print rr.vs() $ List of compartment names

The jacobian matrix can be returned using the command: rr.getFullJacobian()).

E.4 Generating SBML and Matlab Files

Tellurium can import and export standard SBML [41] as well as export
Matlab scripts for the current model. To load a model in SBML, load it
directly into libRoadRunner. For example:

>>> rr = roadrunner.RoadRunner ('mymodel.xml')

>>> result = rr.simulate (0, 10, 100)

There are two ways to retrieve the SBML, one can either retrieve the orig-
inal SBML loaded using rr.getSBML() or retrieve the current SBML us-
ing rr.getCurrentSBML(). Retrieving the current SBML can be useful
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if the model has been changed. To save the SBML to a file we can use the
Tellurium helper function saveToFile (), for example:

>>> te.saveToFile ('mySBMLModel.xml', rr.getCurrentSBML())

To convert an SBML file into Matlab, use the getMatlab method:

import tellurium as te

rr = te.loada ('''

    S1 -> S2; k1*S1;

    S2 -> S3; k2*S2;

    S1 = 10; k1 = 0.1; k2 = 0.2;

''')

# Save the SBML

te.saveToFile ('model.xml', rr.getSBML())

# Save the Matlab

te.saveToFile ('model.mat', rr.getMatlab())

E.5 Exercise

Figure E.5 shows a two gene circuit with a feedforward loop. Assume the
following rate laws for the four reactions:

v1 D k1Xo

v2 D k2x1

v3 D k3Xo

v4 D k4x1x2

Assume that all rate constants are equal to one and that Xo D 1. Assume
Xo is a fixed species.
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Figure E.5 Two gene circuit with feedfoward loop.

1. Use Tellurium to model this system.

2. Run a simulation of the system from 0 to 10 time units.

3. Next, change the value of Xo to 2 (double it) and rerun the simulation
for another 10 time units from where you left off in the last simulation.
Combine both simulations and plot the result, that is time on the x-axis,
and Xo and x2 on the y-axis.

4. What do you see?

5. Write out the differential equations for x1 and x2.

6. Show algebraically that the steady state level of x2 is independent of
Xo.
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