
Threat modeling warm-up

Previously, a link to:
twitter.com / definitely_a_real_user / status / 34273525929
Would appear as exactly that on twitter

Now they have started automatically string search-and-replacing
“twitter.com” with ‘x.com’ only in the rendering of the link.
x.com / definitely_a_real_user / status / 34273525929

This particular example would then still go to twitter.com.
How could a malicious user abuse this search-and-replace behavior on link
rendering?

CSE 484 - Spring 2024

CSE 484: Computer Security and Privacy

Cryptography basics

Spring 2024

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Logistics

• Lab 1a due tonight!
• Remember, up to 3 late days (out of 5 for the quarter) per-assignment

• Stuck on something? Try debugging and tracing _normal_ execution, then
your corrupted execution!

• Sploit3 confusing? Breakpoint at the last instruction you are confident in, and
step instruction at a time. Examine the stack + registers at each one!

• Lab 1b is due in a week (and is significantly trickier. Start ASAP)

• Make sure you did your writeups independently

CSE 484 - Spring 2024

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Hard concept to understand, and revolutionary! Inventors won Turing Award
☺

CSE 484 - Spring 2024

Symmetric Setting

CSE 484 - Spring 2024

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

CSE 484 - Spring 2024

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public keys, Private keys, Secret keys…

• Secret key
• The single key used in symmetric encryption

• The non-public key in asymmetric

• Private keys
• The non-public key in asymmetric

• Public key
• The… public key in asymmetric

• Key
• Generally means private/secret

CSE 484 - Spring 2024

Properties of asymmetric cryptography

• We have a funny situation here:
• Public keys are shared with everyone

• Secret keys are not

• What is are some security properties we would want of:
• Knowing a public key?

• Encrypting a message with a secret key?

CSE 484 - Spring 2024

CSE 484 - Spring 2024

Received April 4, 1977

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

CSE 484 - Spring 2024

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

CSE 484 - Spring 2024

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

• Key building block: Randomness – something that the adversaries
won’t know and can’t predict and can’t figure out

CSE 484 - Spring 2024

Detour: Randomness

CSE 484 - Spring 2024

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

CSE 484 - Spring 2024

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

• Problem: don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones

CSE 484 - Spring 2024

CSE 484 - Spring 2024

CSE 484 - Spring 2024

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
https://web.archive.org/web/20120301022831/http://www.cigital.com/papers/download/deve

loper_gambling.php

https://web.archive.org/web/20120301022831/http:/www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

CSE 484 - Spring 2024

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs

CSE 484 - Spring 2024

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF))

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); };

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not,
the bytes are 0 through 9.

How might we get “good” random numbers?

CSE 484 - Spring 2024

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

CSE 484 - Spring 2024

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy

• getrandom() – syscall! – by default, blocking

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

CSE 484 - Spring 2024

Obtaining Random Numbers

• Better idea:
• AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!

CSE 484 - Spring 2024

Back to encryption

CSE 484 - Spring 2024

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

CSE 484 - Spring 2024

?

Ignore for now: How is this achieved in practice??

One weird bit-level trick

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit

CSE 484 - Spring 2024

One-Time Pad

CSE 484 - Spring 2024

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

CSE 484 - Spring 2024

Problems with the One-Time Pad?

• Gradescope!

• What potential security problems do you see with the one-time pad?

• (Try not to look ahead and next slides)

• Recall two key goals of cryptography: confidentiality and integrity
• Assume we are sending the message over an untrusted medium

• Remember our different adversaries!

CSE 484 - Spring 2024

One-Time Pad - Reminder

CSE 484 - Spring 2024

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Dangers of Reuse

CSE 484 - Spring 2024

= 00000000…

= 00110010…

00110010…
00110010… =


00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

CSE 484 - Spring 2024

Integrity?

CSE 484 - Spring 2024

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else

CSE 484 - Spring 2024

