
CSE 484: Computer Security and Privacy

Software Security:
A few more defenses and attacks

Spring 2024

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

4/5/2024 CSE 484 - Spring 2024 2

Logistics

• Lab 1a due Wednesday
• Lab1a writeups are individual, and are a textbox on gradescope, rather than a

pdf upload.

• We do update the SSH guide and such if there are common
challenges
• Take a look at that and the lab FAQs if you run into problems first

4/5/2024 CSE 484 - Spring 2024 3

Printf exploitation explanation not clicking?

• I’ve uploaded two short exercises for starting to write printf exploits
to ed
• Give them a try if you are a bit lost, or even if you aren’t ☺

4/5/2024 CSE 484 - Spring 2024 4

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

4/5/2024 CSE 484 - Spring 2024 5

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

4/5/2024 CSE 484 - Spring 2024 6

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”

4/5/2024 CSE 484 - Spring 2024 7

Return-Oriented Programming

4/5/2024 CSE 484 - Spring 2024 8

Defense: Run-Time Checking: StackGuard

4/5/2024 CSE 484 - Spring 2024 9

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

4/5/2024 CSE 484 - Spring 2024 10

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

4/5/2024 CSE 484 - Spring 2024 11

Defeating StackGuard

4/5/2024 CSE 484 - Spring 2024 12

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

Defenses so far

• ASLR – Randomize where the stack/heap/code starts
• Counters: Information disclosures, sprays and sleds

• Canaries – Put a value on the stack, see if it changes
• Counters: Arbitrary writes

• DEP – Mark sections of memory as non-executable, e.g. the stack
• Counters: ROP, JOP, Code-reuse attacks in general

CSE 484 - Spring 20244/5/2024 13

Pointer integrity protections (e.g. PointGuard,
PAC, etc.)
• Attack: overwrite a pointer (heap date, ret, function pointer, etc.)

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from memory to
registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will dereference

to a “random” memory address

CSE 484 - Spring 20244/5/2024 14

Normal Pointer Dereference

CSE 484 - Spring 2024

CPU

Memory Pointer
0x1234

Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

4/5/2024 15

PointGuard Dereference

CSE 484 - Spring 2024

[Cowan]

CPU

Memory Encrypted pointer
0x7239

Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786

Decrypt

Decrypts to
random value

0x9786

4/5/2024 16

PointGuard Issues

• Must be very fast
• Pointer dereferences are very common

• Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values end up in

memory and can be overwritten there

• Attacker should not be able to modify the key
• Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?

CSE 484 - Spring 20244/5/2024 17

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at
function return

• 2020/2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO
5000)

CSE 484 - Spring 20244/5/2024 18

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSE 484 - Spring 20244/5/2024 19

What does a modern program do?

4/5/2024 CSE 484 - Spring 2024 20

(Lab 1 version)
08049196 <foo>:
8049196: 55 push %ebp
8049197: 89 e5 mov %esp,%ebp
8049199: 81 ec b8 01 00 00 sub $0x1b8,%esp
804919f: 8b 45 08 mov 0x8(%ebp),%eax
80491a2: 83 c0 04 add $0x4,%eax
80491a5: 8b 00 mov (%eax),%eax
80491a7: 50 push %eax
80491a8: 8d 85 48 fe ff ff lea -0x1b8(%ebp),%eax
80491ae: 50 push %eax
80491af: e8 9c fe ff ff call 8049050 <strcpy@plt>
80491b4: 83 c4 08 add $0x8,%esp
80491b7: 90 nop
80491b8: c9 leave
80491b9: c3 ret

(Mostly normal x86_32)
080491f6 <foo>:
80491f6: f3 0f 1e fb endbr32
80491fa: 55 push %ebp
80491fb: 89 e5 mov %esp,%ebp
80491fd: 81 ec c0 01 00 00 sub $0x1c0,%esp
8049203: 8b 45 08 mov 0x8(%ebp),%eax
8049206: 89 85 40 fe ff ff mov %eax,-0x1c0(%ebp)
804920c: 65 a1 14 00 00 00 mov %gs:0x14,%eax
8049212: 89 45 fc mov %eax,-0x4(%ebp)
8049215: 31 c0 xor %eax,%eax
8049217: 8b 85 40 fe ff ff mov -0x1c0(%ebp),%eax
804921d: 83 c0 04 add $0x4,%eax
8049220: 8b 00 mov (%eax),%eax
8049222: 50 push %eax
8049223: 8d 85 44 fe ff ff lea -0x1bc(%ebp),%eax
8049229: 50 push %eax
804922a: e8 81 fe ff ff call 80490b0 <strcpy@plt>
804922f: 83 c4 08 add $0x8,%esp
8049232: 90 nop
8049233: 8b 55 fc mov -0x4(%ebp),%edx
8049236: 65 33 15 14 00 00 00 xor %gs:0x14,%edx
804923d: 74 05 je 8049244 <foo+0x4e>
804923f: e8 4c fe ff ff call 8049090 <__stack_chk_fail@plt>
8049244: c9 leave
8049245: c3 ret

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust

• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

CSE 484 - Spring 20244/5/2024 21

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 - Spring 20244/5/2024 22

Other Common Software Security Issues…

CSE 484 - Spring 20244/5/2024 23

Another Class of Vulnerability: (Gradescope)

CSE 484 - Spring 2024

char buf[80];

void vulnerable() {

long long len = get_int_from_user();

char *p = get_string_from_user();

int32_t buflen = sizeof buf;

if (len > buflen) {

error("length too large");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

4/5/2024 24

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

Snippet 2

Snippet 1

Implicit Cast

• Consider this code (x86_32bit:

CSE 484 - Spring 2024

char buf[80];

void vulnerable() {

long long len = read_int_from_network();

char *p = read_string_from_network();

int32_t buflen = sizeof buf;

if (len > buflen) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts of

input into buf.

4/5/2024 25

Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result: Allocate a 4-byte buffer, then read a lot of data into that buffer.

CSE 484 - Spring 2024

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
4/5/2024 26

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission

• What can go wrong?

CSE 484 - Spring 2024

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

4/5/2024 27

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal: Write to file only with permission

• Attacker (in another program) can change meaning of
“file” between access and open:
symlink("/etc/passwd", "file");

CSE 484 - Spring 2024

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

4/5/2024 28

Something Different: Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

CSE 484 - Spring 20244/5/2024 29

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

CSE 484 - Spring 2024

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i])
return FALSE

return TRUE

4/5/2024 30

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Is it possible to derive password more quickly?

CSE 484 - Spring 2024

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i])

return FALSE

return TRUE

4/5/2024 31

Try it

dkohlbre.com/cew

4/5/2024 CSE 484 - Spring 2024 32

