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Logistics

• Lab 1a due Wednesday
• Lab1a writeups are individual, and are a textbox on gradescope, rather than a 

pdf upload.

• We do update the SSH guide and such if there are common 
challenges
• Take a look at that and the lab FAQs if you run into problems first
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Printf exploitation explanation not clicking?

• I’ve uploaded two short exercises for starting to write printf exploits 
to ed
• Give them a try if you are a bit lost, or even if you aren’t ☺
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return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺
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return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a 
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what?  Its value is under attacker’s control! 

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack
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Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks 

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”
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Return-Oriented Programming

4/5/2024 CSE 484 - Spring 2024 8



Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary
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Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”
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StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a 
performance penalty
• For example, 8% for Apache Web server at one point in time
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Defeating StackGuard
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• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is 

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy 
BadPointer here



Defenses so far

• ASLR – Randomize where the stack/heap/code starts
• Counters: Information disclosures, sprays and sleds

• Canaries – Put a value on the stack, see if it changes
• Counters: Arbitrary writes

• DEP – Mark sections of memory as non-executable, e.g. the stack
• Counters: ROP, JOP, Code-reuse attacks in general
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Pointer integrity protections (e.g. PointGuard, 
PAC, etc.)
• Attack: overwrite a pointer (heap date, ret, function pointer, etc.)

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from memory to 
registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will dereference 

to a “random” memory address
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Normal Pointer Dereference
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PointGuard Dereference
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[Cowan]
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PointGuard Issues

• Must be very fast
• Pointer dereferences are very common

• Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values end up in 

memory and can be overwritten there

• Attacker should not be able to modify the key
• Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?
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Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at 
function return

• 2020/2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO 
5000)
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Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t 
influence control flow.)
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What does a modern program do?
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(Lab 1 version)
08049196 <foo>:
8049196: 55                   push   %ebp
8049197: 89 e5                mov    %esp,%ebp
8049199: 81 ec b8 01 00 00    sub    $0x1b8,%esp
804919f: 8b 45 08             mov    0x8(%ebp),%eax
80491a2: 83 c0 04             add    $0x4,%eax
80491a5: 8b 00                mov    (%eax),%eax
80491a7: 50                   push   %eax
80491a8: 8d 85 48 fe ff ff lea    -0x1b8(%ebp),%eax
80491ae: 50                   push   %eax
80491af: e8 9c fe ff ff call   8049050 <strcpy@plt>
80491b4: 83 c4 08             add    $0x8,%esp
80491b7: 90                   nop
80491b8: c9                   leave  
80491b9: c3                   ret 

(Mostly normal x86_32)
080491f6 <foo>:
80491f6: f3 0f 1e fb          endbr32 
80491fa: 55                   push   %ebp
80491fb: 89 e5                mov    %esp,%ebp
80491fd: 81 ec c0 01 00 00    sub    $0x1c0,%esp
8049203: 8b 45 08             mov    0x8(%ebp),%eax
8049206: 89 85 40 fe ff ff mov    %eax,-0x1c0(%ebp)
804920c: 65 a1 14 00 00 00    mov    %gs:0x14,%eax
8049212: 89 45 fc             mov    %eax,-0x4(%ebp)
8049215: 31 c0                xor %eax,%eax
8049217: 8b 85 40 fe ff ff mov    -0x1c0(%ebp),%eax
804921d: 83 c0 04             add    $0x4,%eax
8049220: 8b 00                mov    (%eax),%eax
8049222: 50                   push   %eax
8049223: 8d 85 44 fe ff ff lea    -0x1bc(%ebp),%eax
8049229: 50                   push   %eax
804922a: e8 81 fe ff ff call   80490b0 <strcpy@plt>
804922f: 83 c4 08             add    $0x8,%esp
8049232: 90                   nop
8049233: 8b 55 fc             mov    -0x4(%ebp),%edx
8049236: 65 33 15 14 00 00 00 xor %gs:0x14,%edx
804923d: 74 05                je     8049244 <foo+0x4e>
804923f: e8 4c fe ff ff call   8049090 <__stack_chk_fail@plt>
8049244: c9                   leave  
8049245: c3                   ret    



Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust

• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”
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Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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Other Common Software Security Issues…
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Another Class of Vulnerability: (Gradescope)
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char buf[80]; 

void vulnerable() { 

long long len = get_int_from_user(); 

char *p = get_string_from_user(); 

int32_t buflen = sizeof buf; 

if (len > buflen) { 

error("length too large"); 

return; 

} 

memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;
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size_t len = read_int_from_network(); 

char *buf; 

buf = malloc(len+5); 

read(fd, buf, len);

Snippet 2

Snippet 1



Implicit Cast

• Consider this code (x86_32bit:

CSE 484 - Spring 2024

char buf[80]; 

void vulnerable() { 

long long len = read_int_from_network(); 

char *p = read_string_from_network();

int32_t buflen = sizeof buf;

if (len > buflen) { 

error("length too large, nice try!"); 

return; 

} 

memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts of 

input into buf.
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Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result:  Allocate a 4-byte buffer, then read a lot of data into that buffer.
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size_t len = read_int_from_network(); 

char *buf; 

buf = malloc(len+5); 

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
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http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission

• What can go wrong?
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));
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TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission

• Attacker (in another program) can change meaning of 
“file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));
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Something Different: Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long
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Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) 
return FALSE

return TRUE
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Attacker Model

• Attacker can guess CandidatePwds through some 
standard interface

• Naive:  Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Is it possible to derive password more quickly?
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i])

return FALSE

return TRUE
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Try it

dkohlbre.com/cew
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