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Logistics

• Homework 3: Due Wednesday

• Final project: 
• Root cause analysis and patching ☺

• Out now (part A)

• No late days on part C, recommend no late days on part B
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Root-Cause Analysis (RCA)

• Suppose you work on the security team at a company

• You receive a report of a vulnerability in the wild, including a working 
proof-of-concept exploit

• What do you do now?
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Root-Cause Analysis (RCA)

• Basically debugging, but you didn’t generate the input

• Consider:
• What is different between a “normal” interaction and the exploit?

• What part(s) of the program are relevant to that interaction
• Add logging/debugging here! But consider that it might affect the exploit…

• What specifically happened that was “unusual”?

• Develop theories about what is happening

• Test your theories!
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The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
• Aka: the vulnerability

• Consider that an exploit might leverage missing features!

• Find “nearby” bugs
• i.e., if you fix the most-responsible line of code, is it still vulnerable?

• Plan out a patch
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Project 0 (p0) RCAs

• Google Project Zero (aka p0) is the premiere publicly-disclosing bug 
hunting team

• They produce detailed writeups of many bugs, and work with 
Google’s Threat Analysis Group (aka TAG) to produce RCAs of in-the-
wild bugs.

• You should go read some p0 RCAs! 
https://googleprojectzero.github.io/0days-in-the-wild/rca.html
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Patch Writing Goals

• Break the specific exploit strategy the exploit uses

• Break similar exploit strategies
• Consider how XSS filtering worked in Lab 2! (… Not great!)

• Minimize breaking explicit features of the program

• Minimize breaking implicit features of the program
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Public Bug Finding: Terminology

• “Zero Days” – 0 days (aka “o-days”)
• Refers to a bug that is made publicly known at the same time as the vendor is told

• The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
• Common Vulnerabilities and Exposures

• E.g. CVE-2022-4135

• CWE
• Common Weakness Enumeration

• Standardized list of bug types

• CVSS
• Common Vulnerability Scoring System

• Very limited utility, scores barely correlated with impact
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Public Bug Finding: Disclosure

• At some point, the vendor finds out about the bug
• Either publicly revealed by finder (an 0-day)

• Internally found by code auditing

• Found being used in-the-wild

• If you find the bug:
• When do you disclose?

• How do you disclose?

• “Full-disclosure” vs “Coordinated disclosure” vs “Responsible disclosure”

• Bug bounty programs offer incentives to disclose
• But at a cost: you usually have to sign NDAs
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Final Project Learning Goals

• Combine lessons/skills from the quarter:
• Identifying and understanding (and fixing) vulnerabilities

• Debugging and execution tracing (e.g., with gdb)

• Software and web security concepts

• Clear technical communication

• You’ll gain experience in:
• Root-causing a security bug similar to ones seen in class

• Writing patches for security bugs similar to ones seen in class

• Making sense of a moderate codebase (~1100 or fewer loc) 

• This lab is a more realistic depiction of what working in security industry on the 
defender side in “real life” might be like
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Final Project Components

• Part A
• We will give you the RCA for an exploit, and you have to write the patch

• Part B
• We will give you an exploit, and you have to write the RCA
• (You can choose one of three exploits. You can do one additional for extra credit.)

• Part C
• You have to write the patch for Part B’s exploit
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tinyserv – a tiny, bad, HTTP server

• ~1000 lines of C code

• Moderately well commented

• Quite buggy ☺

• You can interact with it via command line tools or a web browser

CSE 484 - Fall 2024



Major Features

• “admin” login
• Sets a randomized password on server start

• Successful login sets a cookie that lets admins access admin.txt

• admin.txt contains a log of requests received so far

• (Our exploits work by demonstrating they can access admin.txt)

• Dynamic content fills
• Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
• Pages are cached in a hashtable on first send

• Future responses will check the hashtable first
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How Should You Start?

• To run it, inside target/tinyserv: ./tinyserv ./files

• In browser (from anywhere), visit:
• http://umnak.cs.washington.edu:YOUR-PORT-NUMBER

• Find the port number in the lab3_port file, and your group’s secret in the 
lab3_group_secret file

• (FYI, to minimize risk, the server will kill itself after 3 hours if you leave it 
running)
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Quick Demo

• Notes from demo:
• “make” inside target/tinyserv to (re)compile tinyserv

• curl: a tool that generates an HTTP request, used in sploits

• “./handin.sh” to create a diff after you’ve created a patch
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RCA Strategies

• Read through the server code (see main.c to start)
• You don’t have to understand everything!

• Read through the sploit inputs and try to guess which parts of the tinyserv code 
might be related; start debugging there!

• Use gdb for debugging and execution tracing
• gdb –args ./tinyserv ./files

• break [function name or line number]

• run

• From another terminal window, you can now run the sploits

• (Maybe:) Modify main.c to test things out or add print statements
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Other Final Project Notes

• There is an additional cookie: the lab group secret key
• This is NOT part of the lab, it is there to prevent accidentally interacting with 

other groups’ servers

• You also don’t need to dig into the socket-related code
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Turn-in (Group Submissions)

There are 5 Gradescope assignments:

• Everyone submits to this one:
• Final Project Part A – Sploit1

• Submit to ONE of these, depending on which sploit you do:
• Final Project Part B – Sploit3 Version

• Final Project Part B – Sploit4 Version

• Submit to ONE of these, matching your part B:
• Final Project Part C – Sploit3 Version

• Final Project Part C – Sploit4 Version
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