
CSE 484: Computer Security and Privacy

Root Cause Analysis and
Patching

Spring 2024

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Logistics

• Homework 3: Due Wednesday

• Final project:
• Root cause analysis and patching ☺

• Out now (part A)

• No late days on part C, recommend no late days on part B

CSE 484 - Fall 2024

Root-Cause Analysis (RCA)

• Suppose you work on the security team at a company

• You receive a report of a vulnerability in the wild, including a working
proof-of-concept exploit

• What do you do now?

CSE 484 - Fall 2024

Root-Cause Analysis (RCA)

• Basically debugging, but you didn’t generate the input

• Consider:
• What is different between a “normal” interaction and the exploit?

• What part(s) of the program are relevant to that interaction
• Add logging/debugging here! But consider that it might affect the exploit…

• What specifically happened that was “unusual”?

• Develop theories about what is happening

• Test your theories!

CSE 484 - Fall 2024

The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
• Aka: the vulnerability

• Consider that an exploit might leverage missing features!

• Find “nearby” bugs
• i.e., if you fix the most-responsible line of code, is it still vulnerable?

• Plan out a patch

CSE 484 - Fall 2024

Project 0 (p0) RCAs

• Google Project Zero (aka p0) is the premiere publicly-disclosing bug
hunting team

• They produce detailed writeups of many bugs, and work with
Google’s Threat Analysis Group (aka TAG) to produce RCAs of in-the-
wild bugs.

• You should go read some p0 RCAs!
https://googleprojectzero.github.io/0days-in-the-wild/rca.html

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/rca.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Patch Writing Goals

• Break the specific exploit strategy the exploit uses

• Break similar exploit strategies
• Consider how XSS filtering worked in Lab 2! (… Not great!)

• Minimize breaking explicit features of the program

• Minimize breaking implicit features of the program

CSE 484 - Fall 2024

Public Bug Finding: Terminology

• “Zero Days” – 0 days (aka “o-days”)
• Refers to a bug that is made publicly known at the same time as the vendor is told

• The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
• Common Vulnerabilities and Exposures

• E.g. CVE-2022-4135

• CWE
• Common Weakness Enumeration

• Standardized list of bug types

• CVSS
• Common Vulnerability Scoring System

• Very limited utility, scores barely correlated with impact

CSE 484 - Fall 2024

Public Bug Finding: Disclosure

• At some point, the vendor finds out about the bug
• Either publicly revealed by finder (an 0-day)

• Internally found by code auditing

• Found being used in-the-wild

• If you find the bug:
• When do you disclose?

• How do you disclose?

• “Full-disclosure” vs “Coordinated disclosure” vs “Responsible disclosure”

• Bug bounty programs offer incentives to disclose
• But at a cost: you usually have to sign NDAs

CSE 484 - Fall 2024

Final Project Learning Goals

• Combine lessons/skills from the quarter:
• Identifying and understanding (and fixing) vulnerabilities

• Debugging and execution tracing (e.g., with gdb)

• Software and web security concepts

• Clear technical communication

• You’ll gain experience in:
• Root-causing a security bug similar to ones seen in class

• Writing patches for security bugs similar to ones seen in class

• Making sense of a moderate codebase (~1100 or fewer loc)

• This lab is a more realistic depiction of what working in security industry on the
defender side in “real life” might be like

CSE 484 - Fall 2024

Final Project Components

• Part A
• We will give you the RCA for an exploit, and you have to write the patch

• Part B
• We will give you an exploit, and you have to write the RCA
• (You can choose one of three exploits. You can do one additional for extra credit.)

• Part C
• You have to write the patch for Part B’s exploit

CSE 484 - Fall 2024

tinyserv – a tiny, bad, HTTP server

• ~1000 lines of C code

• Moderately well commented

• Quite buggy ☺

• You can interact with it via command line tools or a web browser

CSE 484 - Fall 2024

Major Features

• “admin” login
• Sets a randomized password on server start

• Successful login sets a cookie that lets admins access admin.txt

• admin.txt contains a log of requests received so far

• (Our exploits work by demonstrating they can access admin.txt)

• Dynamic content fills
• Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
• Pages are cached in a hashtable on first send

• Future responses will check the hashtable first

CSE 484 - Fall 2024

How Should You Start?

• To run it, inside target/tinyserv: ./tinyserv ./files

• In browser (from anywhere), visit:
• http://umnak.cs.washington.edu:YOUR-PORT-NUMBER

• Find the port number in the lab3_port file, and your group’s secret in the
lab3_group_secret file

• (FYI, to minimize risk, the server will kill itself after 3 hours if you leave it
running)

CSE 484 - Fall 2024

http://umnak.cs.washington.edu:YOUR-PORT-NUMBER

Quick Demo

• Notes from demo:
• “make” inside target/tinyserv to (re)compile tinyserv

• curl: a tool that generates an HTTP request, used in sploits

• “./handin.sh” to create a diff after you’ve created a patch

CSE 484 - Fall 2024

RCA Strategies

• Read through the server code (see main.c to start)
• You don’t have to understand everything!

• Read through the sploit inputs and try to guess which parts of the tinyserv code
might be related; start debugging there!

• Use gdb for debugging and execution tracing
• gdb –args ./tinyserv ./files

• break [function name or line number]

• run

• From another terminal window, you can now run the sploits

• (Maybe:) Modify main.c to test things out or add print statements

CSE 484 - Fall 2024

Other Final Project Notes

• There is an additional cookie: the lab group secret key
• This is NOT part of the lab, it is there to prevent accidentally interacting with

other groups’ servers

• You also don’t need to dig into the socket-related code

CSE 484 - Fall 2024

Turn-in (Group Submissions)

There are 5 Gradescope assignments:

• Everyone submits to this one:
• Final Project Part A – Sploit1

• Submit to ONE of these, depending on which sploit you do:
• Final Project Part B – Sploit3 Version

• Final Project Part B – Sploit4 Version

• Submit to ONE of these, matching your part B:
• Final Project Part C – Sploit3 Version

• Final Project Part C – Sploit4 Version

CSE 484 - Fall 2024

