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Logistics

• Lab 1b due tonight, remember you can use up-to-3 late days
• Sploit5 is behaving slightly differently between servers, but is solvable on 

both broadly similarly.

• Remember to do the readings for Lab1! They are there to help.

• Homework 2 due in 2 weeks

• Things not going well? Please reach out to us ASAP!
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Now: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.
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Reminder: CBC Mode Encryption
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• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher


Initialization
vector
(random)

  key key key key

Sent with ciphertext
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CBC-MAC
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TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

   
key key key key

• Not secure when system may MAC messages of different lengths 
• Use a different key – not encryption key
• NIST recommends a derivative called CMAC [FYI only]
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Another Tool: Hash Functions
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Hash Functions: Main Idea
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bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message 
“digest”

message
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Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y in {0,1}n for a random x’ 

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)
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Birthday Paradox

• Are there two people in your part of the classroom that 
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person.  To find another person with same birthday would 
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value 
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only 
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)
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One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but 
not the other. 

CSE 484 - Spring 20244/17/2024 13



One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except drop the last bit

• h is one-way (to invert h, must invert g)
• Collisions for h are easy to find: for any x, h(x0)=h(x1)

• Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define y=h(x) to be 0x if x is n-bit long, 1g(x) otherwise

• Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts 
with 1, then must find collisions in g

• h is not one way: half of all y’s (those whose first bit is 0) are easy to invert (how?); 
random y is invertible with probability ½ 
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Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision 

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.
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Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no 

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with 
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic 
checksums” or “message digests”
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!
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Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• Server generates the salt

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common 

passwords

CSE 484 - Spring 20244/17/2024 20



Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit 
values)

• Properties:
• Collision Resistance: Hard to find two distinct inputs that map to same output

• One-wayness: Given a point in the range (that was computed as the hash of a 
random domain element), hard to find a preimage

• Weak Collision Resistance: Given a point in the domain and its hash in the 
range, hard to find a new domain element that maps to the same range 
element
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Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by 
users without modification. 

Idea: given goodFile and hash(goodFile), very hard to find 
badFile such that hash(goodFile)=hash(badFile)
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goodFile
BigFirm™

User

VIRUS

badFile

The NYTimes

hash(goodFile)
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Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• d
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Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that they need 

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change their mind to bid B’ such 

that H(B)=H(B’)
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Commitments
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Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3:  standard released by NIST in August 2015

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!
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SHA-1 Broken in Practice (2017)
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https://shattered.io
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Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc
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Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.
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HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption
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MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC 
constructions
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• Is this fine? (Pollev)
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M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC
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M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

4/17/2024 34



Authenticated Encryption

• Instead: 

Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C
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Back to cryptography land
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Stepping Back: 
Flavors of Cryptography
• Symmetric cryptography

• Both communicating parties have access to a shared random string K, called 
the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  
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Symmetric Setting
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Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we 
know it’s REALLY Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
• Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
• Can “sign” a message with your private key

• Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)
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Session Key Establishment
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Modular Arithmetic

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*
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Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp*  i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman Computation
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Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      gxy mod p and gr mod p

where r is random
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More on Diffie-Hellman 
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and 

performance (size) properties
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random 
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against 
active attackers)
• Person in the middle attack (also called “man in the middle attack”)
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Example from Earlier

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption 
• For confidentiality

• Then: digital signatures
• For authenticity
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