
CSE 484: Computer Security and Privacy

Cryptography 5

Spring 2024

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Logistics

• Lab 1b due tonight, remember you can use up-to-3 late days
• Sploit5 is behaving slightly differently between servers, but is solvable on

both broadly similarly.

• Remember to do the readings for Lab1! They are there to help.

• Homework 2 due in 2 weeks

• Things not going well? Please reach out to us ASAP!

CSE 484 - Spring 20244/17/2024 2

Now: Achieving Integrity

CSE 484 - Spring 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

4/17/2024 3

Reminder: CBC Mode Encryption

CSE 484 - Spring 2024

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

 key key key key

Sent with ciphertext

4/17/2024 4

CBC-MAC

CSE 484 - Spring 2024

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

key key key key

• Not secure when system may MAC messages of different lengths
• Use a different key – not encryption key
• NIST recommends a derivative called CMAC [FYI only]

4/17/2024 5

Another Tool: Hash Functions

CSE 484 - Spring 20244/17/2024 6

Hash Functions: Main Idea

CSE 484 - Spring 2024

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

4/17/2024 8

Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y in {0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.

CSE 484 - Spring 20244/17/2024 9

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

CSE 484 - Spring 20244/17/2024 10

Birthday Paradox

• Are there two people in your part of the classroom that
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person. To find another person with same birthday would
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.

CSE 484 - Spring 20244/17/2024 11

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

CSE 484 - Spring 20244/17/2024 12

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but
not the other.

CSE 484 - Spring 20244/17/2024 13

One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except drop the last bit

• h is one-way (to invert h, must invert g)
• Collisions for h are easy to find: for any x, h(x0)=h(x1)

• Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define y=h(x) to be 0x if x is n-bit long, 1g(x) otherwise

• Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts
with 1, then must find collisions in g

• h is not one way: half of all y’s (those whose first bit is 0) are easy to invert (how?);
random y is invertible with probability ½

CSE 484 - Spring 20244/17/2024 14

Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.

CSE 484 - Spring 20244/17/2024 15

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

CSE 484 - Spring 20244/17/2024 16

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

CSE 484 - Spring 20244/17/2024 17

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!

CSE 484 - Spring 20244/17/2024 18

Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSE 484 - Spring 20244/17/2024 19

Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• Server generates the salt

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common

passwords

CSE 484 - Spring 20244/17/2024 20

Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit
values)

• Properties:
• Collision Resistance: Hard to find two distinct inputs that map to same output

• One-wayness: Given a point in the range (that was computed as the hash of a
random domain element), hard to find a preimage

• Weak Collision Resistance: Given a point in the domain and its hash in the
range, hard to find a new domain element that maps to the same range
element

CSE 484 - Spring 20244/17/2024 21

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by
users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

CSE 484 - Spring 2024

goodFile
BigFirm™

User

VIRUS

badFile

The NYTimes

hash(goodFile)

4/17/2024 22

Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSE 484 - Spring 20244/17/2024 23

Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• d

CSE 484 - Spring 20244/17/2024 24

Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that they need

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change their mind to bid B’ such

that H(B)=H(B’)

CSE 484 - Spring 20244/17/2024 25

Commitments

CSE 484 - Spring 20244/17/2024 26

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3: standard released by NIST in August 2015

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!

CSE 484 - Spring 20244/17/2024 27

SHA-1 Broken in Practice (2017)

CSE 484 - Spring 2024

https://shattered.io

4/17/2024 28

https://shattered.io/

Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc

CSE 484 - Spring 20244/17/2024 29

Recall: Achieving Integrity

CSE 484 - Spring 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

4/17/2024 30

HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

CSE 484 - Spring 20244/17/2024 31

MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC
constructions

CSE 484 - Spring 20244/17/2024 32

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• Is this fine? (Pollev)

CSE 484 - Spring 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm

4/17/2024 33

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC

CSE 484 - Spring 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

4/17/2024 34

Authenticated Encryption

• Instead:

Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

CSE 484 - Spring 2024

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

4/17/2024 35

Back to cryptography land

CSEP 564 - Fall 2022

Stepping Back:
Flavors of Cryptography
• Symmetric cryptography

• Both communicating parties have access to a shared random string K, called
the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

CSEP 564 - Fall 2022

Symmetric Setting

CSEP 564 - Fall 2022

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

CSEP 564 - Fall 2022

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

CSEP 564 - Fall 2022

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we
know it’s REALLY Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
• Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
• Can “sign” a message with your private key

• Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

CSEP 564 - Fall 2022

Session Key Establishment

CSEP 564 - Fall 2022

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

CSEP 564 - Fall 2022

Diffie-Hellman Protocol (1976)

CSEP 564 - Fall 2022

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp* i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p

CSEP 564 - Fall 2022

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman Computation

CSEP 564 - Fall 2022

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between gxy mod p and gr mod p

where r is random

CSEP 564 - Fall 2022

More on Diffie-Hellman
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and

performance (size) properties

CSEP 564 - Fall 2022

Diffie-Hellman: Conceptually

CSEP 564 - Fall 2022

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against
active attackers)
• Person in the middle attack (also called “man in the middle attack”)

CSEP 564 - Fall 2022

Example from Earlier

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order

CSEP 564 - Fall 2022

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption
• For confidentiality

• Then: digital signatures
• For authenticity

CSEP 564 - Fall 2022

