
CSE 484: Computer Security and Privacy

Cryptography basics

Spring 2023

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Logistics

• Lab 1a due tonight!
• Remember, up to 3 late days (out of 5 for the quarter) per-assignment

• Stuck on something? Try debugging and tracing _normal_ execution, then
your corrupted execution!

How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on
top of cryptographic primitives (like “block ciphers”)

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Don’t go inventing your own! (If you just want to use some crypto in your system,
use vetted libraries!)

4/14/2023 CSE 484 - Spring 2023 3

The Cryptosystem Stack

• Primitives:
• AES / DES / etc
• RSA / ElGamal / Elliptic Curve (ed25519)

• Modes:
• Block modes (CBC, ECB, CTR, GCM, …)
• Padding structures

• Protocols:
• TLS / SSL / SSH / tc

• Usage of Protocols:
• Browser security
• Secure remote logins

4/14/2023 CSE 484 - Spring 2023 4

Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy
of the secret (private) key.

• Security should not depend on the secrecy of the algorithm itself.

• Foreshadow: Need for randomness – the key to keep private

4/14/2023 CSE 484 - Spring 2023 5

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Hard concept to understand, and revolutionary! Inventors won Turing Award
☺

4/14/2023 CSE 484 - Spring 2023 6

Symmetric Setting

4/14/2023 CSE 484 - Spring 2023 7

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

4/14/2023 CSE 484 - Spring 2023 8

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Properties of asymmetric cryptography

• We have a funny situation here:
• Public keys are shared with everyone

• Secret keys are not

• What is are some security properties we would want of:
• Knowing a public key?

• Encrypting a message with a secret key?

4/14/2023 CSE 484 - Spring 2023 9

Public keys, Private keys, Secret keys…

• Secret key
• The single key used in symmetric encryption

• The non-public key in asymmetric

• Private keys
• The non-public key in asymmetric

• Public key
• The… public key in asymmetric

• Key
• Generally means private/secret

4/14/2023 CSE 484 - Spring 2023 10

4/14/2023 CSE 484 - Spring 2023 11

Received April 4, 1977

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

4/14/2023 CSE 484 - Spring 2023 12

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

4/14/2023 CSE 484 - Spring 2023 13

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

• Key building block: Randomness – something that the adversaries
won’t know and can’t predict and can’t figure out

4/14/2023 CSE 484 - Spring 2023 14

Detour: Randomness

4/14/2023 CSEP 564 - Fall 2022 15

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

4/14/2023 CSEP 564 - Fall 2022 16

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

• Problem: don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones

4/14/2023 CSEP 564 - Fall 2022 17

4/14/2023 CSEP 564 - Fall 2022 18

4/14/2023 CSEP 564 - Fall 2022 19

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

4/14/2023 CSEP 564 - Fall 2022 20

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs

4/14/2023 CSEP 564 - Fall 2022 21

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF))

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); };

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not,
the bytes are 0 through 9.

How might we get “good” random numbers?

4/14/2023 CSEP 564 - Fall 2022 22

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

4/14/2023 CSEP 564 - Fall 2022 23

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy

• getrandom() – syscall! – by default, blocking

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

4/14/2023 CSEP 564 - Fall 2022 24

Back to encryption

4/14/2023 CSEP 564 - Fall 2022 26

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

4/14/2023 CSEP 564 - Fall 2022 27

?

Ignore for now: How is this achieved in practice??

One weird bit-level trick

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit

4/14/2023 CSEP 564 - Fall 2022 28

One-Time Pad

4/14/2023 CSEP 564 - Fall 2022 29

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

4/14/2023 CSEP 564 - Fall 2022 30

Problems with the One-Time Pad?

• Discuss and canvas

• What potential security problems do you see with the one-time pad?

• (Try not to look ahead and next slides)

• Recall two key goals of cryptography: confidentiality and integrity

4/14/2023 CSEP 564 - Fall 2022 31

One-Time Pad - Reminder

4/14/2023 CSEP 564 - Fall 2022 32

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

Dangers of Reuse

4/14/2023 CSEP 564 - Fall 2022 33

= 00000000…

= 00110010…

00110010…
00110010… =

00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

4/14/2023 CSEP 564 - Fall 2022 34

Integrity?

4/14/2023 CSEP 564 - Fall 2022 35

= 10111101…

= 00110010…

10001111…
00110010… =

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext key =
(plaintext key) key =
plaintext (key key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else

4/14/2023 CSEP 564 - Fall 2022 36

