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Logistics

• Lab 1a due tonight!
• Remember, up to 3 late days (out of 5 for the quarter) per-assignment

• Stuck on something? Try debugging and tracing _normal_ execution, then 
your corrupted execution!



How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on 
top of cryptographic primitives (like “block ciphers”) 

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Don’t go inventing your own! (If you just want to use some crypto in your system, 
use vetted libraries!)
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The Cryptosystem Stack

• Primitives:
• AES / DES / etc
• RSA / ElGamal / Elliptic Curve (ed25519)

• Modes:
• Block modes (CBC, ECB, CTR, GCM, …)
• Padding structures

• Protocols:
• TLS / SSL / SSH / tc

• Usage of Protocols:
• Browser security
• Secure remote logins
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Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy 
of the secret (private) key.

• Security should not depend on the secrecy of the algorithm itself.

• Foreshadow: Need for randomness – the key to keep private
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  

• Hard concept to understand, and revolutionary! Inventors won Turing Award 
☺
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Symmetric Setting
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Asymmetric Setting
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Each party creates a public key pk and a secret key sk.
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Properties of asymmetric cryptography

• We have a funny situation here:
• Public keys are shared with everyone

• Secret keys are not

• What is are some security properties we would want of:
• Knowing a public key?

• Encrypting a message with a secret key?
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Public keys, Private keys, Secret keys…

• Secret key
• The single key used in symmetric encryption

• The non-public key in asymmetric

• Private keys
• The non-public key in asymmetric

• Public key
• The… public key in asymmetric

• Key
• Generally means private/secret
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  

• Challenge: How do you validate a public key?
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Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called 

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  

• Challenge: How do you validate a public key?

• Key building block: Randomness – something that the adversaries 
won’t know and can’t predict and can’t figure out
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Detour: Randomness
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Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)
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C’s rand() Function

• C has a built-in random function:  rand()
unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

}

• Problem:  don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones
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More details: “How We Learned to Cheat at Online Poker: A Study in Software Security” 
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php


PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it 
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all 
system updates
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http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/


A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs
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https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF)) 

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); }; 

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The 
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not, 
the bytes are 0 through 9.



How might we get “good” random numbers?
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Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically 
secure pseudorandom numbers”

• Libraries include cryptographically secure 
pseudorandom number generators (CSPRNG)
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Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy

• getrandom() – syscall! – by default, blocking

• Internally:
• Entropy pool gathered from multiple sources 

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs
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Back to encryption
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Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.
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?
----------
-----

Ignore for now: How is this achieved in practice??



One weird bit-level trick

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit
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One-Time Pad
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= 10111101…
---------------

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, 
and every key is equally likely   (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = 
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 



Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s 

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?
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Problems with the One-Time Pad?

• Discuss and canvas

• What potential security problems do you see with the one-time pad?

• (Try not to look ahead and next slides)

• Recall two key goals of cryptography: confidentiality and integrity
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One-Time Pad - Reminder
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= 10111101…
---------------

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, 
and every key is equally likely   (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = 
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 



Dangers of Reuse
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= 00000000…
---------------

= 00110010…

00110010…
00110010… =


00000000…P1

C1

= 11111111…
---------------

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) = 
(P1P2)(KK) = P1P2



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts
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Integrity?
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= 10111101…
---------------

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = 
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key = 
(plaintext  key)  key =
plaintext  (key  key) =
plaintext 

0

0



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else
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