Warmup:

4/9/2023 CSE484 - Spring 2023

CSE 484: Computer Security and Privacy

Software Security:
A few more defenses and attacks

Spring 2023

David Kohlbrenner
dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly,Shmatikoy, Bennet Yee, and many others for sample
slides and materials ...

Logistics

e Lab 1 due Friday

* If you are having any problems, please read the SSH guide and instructions
closely!

* In general, post _text_ not screenshots of text for questions on ed

Defenses so far

* ASLR — Randomize where the stack/heap/code starts
e Counters: Information disclosures, sprays and sleds

* Canaries — Put a value on the stack, see if it changes
e Counters: Arbitrary writes

* DEP — Mark sections of memory as non-executable, e.g. the stack
e Counters: ROP, JOP, Code-reuse attacks in general

Pointer integrity protections (e.g. PointGuard)

» Attack: overflow a function pointer so that it points to attack
code

* |dea: encrypt all pointers while in memory
* Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from memory to
registers or stored back into memory

* Pointers cannot be overflowed while in registers

e Attacker cannot predict the target program’s key

* Even if pointer is overwritten, after XORing with key it will dereference
to a “random” memory address

4/9/2023 CSEP 564 - Fall 2022

Normal Pointer Dereference

Memory

Memory

1. Fetch pointer value

CPU

2. Access data referenced by pointer

[Cowan]

1. Fetch pointer value

CPU

/ b}
Pointer 5
0x1234 ata

0x1234

2. Access attack code referenced
by corrupted pointer

Corrupt
—T0x1234 |
0x1340

bd pointer

—

Attack
code

Data

0x1234 0x1340

PointGuard Dereference

4/9/2023

Memory

Memory

CPU
,//f;1234

2. Access data referenced by pointer

[Cowan]

1. Fetch pointer
value Decrypt
// D"y
Encryptefd pointer
0x7239 Data
0x1234
Decrypts to C P U
T 2. Access random address;
0x9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
i
Corrupted pointer Attack T
TOxA239] Data
0x1340 code
0x1234 0x1340 0x9786

CSEP 564 - Fall 2022

Pollev.com/dkohlbre

* What might be a challenge of adding pointguard (or generally a
pointer-encryption scheme) to code?

* Consider how it would work with libraries, the operating system, etc.

CPU

1. Fetch pointer A‘x1234 2. Access data referenced by pointer
value Decrypt
y

7 q
Encrypted pointer

Memory 0x7239 Data

0x1234

PointGuard Issues

* Must be very fast
* Pointer dereferences are very common

* Compiler issues

* Must encrypt and decrypt only pointers

* |f compiler “spills” registers, unencrypted pointer values end up in
memory and can be overwritten there

» Attacker should not be able to modify the key
 Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
 What if PG’d code needs to pass a pointer to OS kernel?

4/9/2023 CSEP 564 - Fall 2022

Defense: Shadow stacks

* |dea: don’t store return addresses on the stack!

e Store them on... a different stack!
* A hidden stack

e On function call/return
» Store/retrieve the return address from shadow stack

* Or store on both main stack and shadow stack, and compare for equality at
function return

. %8(2)8{2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO

Challenges With Shadow Stacks

* Where do we put the shadow stack?
e Can the attacker figure out where it is? Can they access it?

 How fast is it to store/retrieve from the shadow stack?
* How big is the shadow stack?
* |s this compatible with all software?

e (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

80491f6:
80491fa:
80491fb:
80491fd:
8049203
8049206
804920c:
8049212
8049215
8049217
804921d:
8049220
8049222
8049223
8049229:
804922a:
804922
8049232:
8049233
8049236:
804923d:
804923f:
8049244 :
8049245

What does a modern program do?

(Mostly normal x86_32)
080491f6 <foo>:

3
55
89
81
8b
89
65
89
31
8b
83
8b
50
8d
50
e8
83
90
8b
65
74
e8
c9
c3

of 1le

e5

ec co
45 08
85 40
al 14
45 fc
co

85 40
co 04
00

85 44

81 fe
c4 08

55 fc
33 15
05

4c fe

b

01

fe

00

fe

fe

£f

14

£f

00

£f

00

£f

£f

£f

00

£f

00

£f

00

£f

£f

00 00

endbr32
push %ebp
mov %esp, %ebp

sub $0x1c0, %esp
mov ox8(%ebp) , %eax
mov %eax, -0x1co (%ebp)

mov %gs :0x14,%eax

mov %eax, -ox4(%ebp)
xor %eax, heax

mov -0x1cO(%ebp),%eax
add $0x4, %eax

mov (%eax) ,%eax

push %eax

lea -0x1bc(%ebp),%eax

push %eax
call 80490b0 <strcpy@plt>
add $0x8, %esp

nop

mov -0x4 (%ebp) , %edx
xor %gs :0x14, %edx

je 8049244 <foo+0x4de>

call 8049090 <__ stack_chk_fail@plt>
leave
ret

(Lab 1 version)
08049196 <foo>:

8049196
8049197
8049199
804919
80491a2:
80491a5:
80491a7:
80491a8:
80491ae:
80491af:
80491b4:
80491b7:
80491b8:
80491b9:

55
89
81
8b
83
8b
50
8d
50
e8
83
90
c9
c3

e5
ec
45
co
00

85

Sc
c4

b8 01 00 00
08
04

48 fe ff ff

fe ff ff
08

push
mov
sub
mov
add
mov
push
lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp

$0x1b8, %esp
Ox8(%ebp) ,%eax
$0x4, %eax

(%eax) ,%eax

%eax
-0x1b8(%ebp) , %eax
%eax

8049050 <strcpy@plt>
$0x8, %esp

Other Big Classes of Defenses

* Use safe programming languages, e.g., Java, Rust
 What about legacy C code?
 (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows

* Dynamic testing: “fuzzing”

4/9/2023 CSEP 564 - Fall 2022

13

Fuzz Testing

* Generate “random” inputs to program
* Sometimes conforming to input structures (file formats, etc.)

* See if program crashes
* |f crashes, found a bug
* Bug may be exploitable

* Surprisingly effective

* Now standard part of development lifecycle

4/9/2023 CSEP 564 - Fall 2022

14

Other Common Software Security Issues...

Another Type of Vulnerability

char buf[80];

vold wvulnerable () {
int len = read int from network() ;
char *p = read string from network(); size t len = read int from network();
if (len > sizeof buf) { char *buf;
error ("length too large"); buf = malloc(len+td);
return; read (fd, buf, len);

}

Snippet 2
memcpy (buf, p, len);

Snippet 1

void *memcpy (void *dst, const void * src, size t n);

typedef unsigned int size t;

Implicit Cast

If len is negative, may

* Consider this code: copy huge amounts of
char buf[80]; . :
void vulnerable () { input into but.
int len = read int from network();
char *p = read string from network();
1if (len > sizeof buf) {
error ("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

Integer Overflow

4/9/2023

size t len = read int from network();
char *buf;

buf = malloc (len+b);

read (fd, buf, len):;

 What if len is large (e.g., len = OXFFFFFFFF)?
 Thenlen +5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
CSEP 564 - Fall 2022

18

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

e Consider this code:

1f (access(“file”, W OK) != 0) {
exit(1l); // user not allowed to write to file

}

fd = open(“file”, O WRONLY) ;
write (fd, buffer, sizeof (buffer)):;

e Goal: Write to file only with permission
 What can go wrong?

TOCTOU (Race Condition)

e TOCTOU = “Time of Check to Tile of Use”

1f (access(“file”, W OK) != 0) {
exit(1l); // user not allowed to write to file

}

fd = open(“file”, O WRONLY) ;
write (fd, buffer, sizeof (buffer)):;

e Goal: Write to file only with permission

 Attacker (in another program) can change meaning of

“file” between access and open:
symlink ("/etc/passwd", "file");

Something Different: Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

4/9/2023 CSEP 564 - Fall 2022

21

Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars

for i =1 to 8 do
if (RealPwd[i]

!= CandidatePwd[i])

return FALSE

return TRUE

* Clearly meets functional description

4/9/2023 CSEP 564 - Fall 2022

22

Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i])
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =
possibilities
* |s it possible to derive password more quickly?

4/9/2023 CSEP 564 - Fall 2022

23

Try it

dkohlbre.com/cew

