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Logistics

e Lab 1 due Friday

* If you are having any problems, please read the SSH guide and instructions
closely!

* In general, post _text_ not screenshots of text for questions on ed



Defenses so far

* ASLR — Randomize where the stack/heap/code starts
e Counters: Information disclosures, sprays and sleds

* Canaries — Put a value on the stack, see if it changes
e Counters: Arbitrary writes

* DEP — Mark sections of memory as non-executable, e.g. the stack
e Counters: ROP, JOP, Code-reuse attacks in general



Pointer integrity protections (e.g. PointGuard)

» Attack: overflow a function pointer so that it points to attack
code

* |dea: encrypt all pointers while in memory
* Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from memory to
registers or stored back into memory

* Pointers cannot be overflowed while in registers

e Attacker cannot predict the target program’s key

* Even if pointer is overwritten, after XORing with key it will dereference
to a “random” memory address
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Normal Pointer Dereference
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PointGuard Dereference
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Pollev.com/dkohlbre

* What might be a challenge of adding pointguard (or generally a
pointer-encryption scheme) to code?

* Consider how it would work with libraries, the operating system, etc.
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PointGuard Issues

* Must be very fast
* Pointer dereferences are very common

* Compiler issues

* Must encrypt and decrypt only pointers

* |f compiler “spills” registers, unencrypted pointer values end up in
memory and can be overwritten there

» Attacker should not be able to modify the key
 Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
 What if PG’d code needs to pass a pointer to OS kernel?
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Defense: Shadow stacks

* |dea: don’t store return addresses on the stack!

e Store them on... a different stack!
* A hidden stack

e On function call/return
» Store/retrieve the return address from shadow stack

* Or store on both main stack and shadow stack, and compare for equality at
function return

. %8(2)8{2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO



Challenges With Shadow Stacks

* Where do we put the shadow stack?
e Can the attacker figure out where it is? Can they access it?

 How fast is it to store/retrieve from the shadow stack?
* How big is the shadow stack?
* |s this compatible with all software?

e (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)



80491f6:
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What does a modern program do?

(Mostly normal x86_32)
080491f6 <foo>:
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endbr32
push  %ebp
mov %esp, %ebp

sub $0x1c0, %esp
mov ox8(%ebp) , %eax
mov %eax, -0x1co (%ebp)

mov %gs :0x14,%eax

mov %eax, -ox4(%ebp)
xor %eax, heax

mov -0x1cO(%ebp),%eax
add $0x4, %eax

mov (%eax) ,%eax

push  %eax

lea -0x1bc(%ebp),%eax

push  %eax
call 80490b0 <strcpy@plt>
add $0x8, %esp

nop

mov -0x4 (%ebp) , %edx
xor %gs :0x14, %edx

je 8049244 <foo+0x4de>

call 8049090 <__ stack_chk_fail@plt>
leave
ret

(Lab 1 version)
08049196 <foo>:
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mov
sub
mov
add
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lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp

$0x1b8, %esp
Ox8(%ebp) ,%eax
$0x4, %eax

(%eax) ,%eax

%eax
-0x1b8(%ebp) , %eax
%eax

8049050 <strcpy@plt>
$0x8, %esp



Other Big Classes of Defenses

* Use safe programming languages, e.g., Java, Rust
 What about legacy C code?
 (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows

* Dynamic testing: “fuzzing”
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Fuzz Testing

* Generate “random” inputs to program
* Sometimes conforming to input structures (file formats, etc.)

* See if program crashes
* |f crashes, found a bug
* Bug may be exploitable

* Surprisingly effective

* Now standard part of development lifecycle
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Other Common Software Security Issues...



Another Type of Vulnerability

char buf[80];

vold wvulnerable () {
int len = read int from network() ;
char *p = read string from network(); size t len = read int from network();
if (len > sizeof buf) { char *buf;
error ("length too large"); buf = malloc(len+td);
return; read (fd, buf, len);

}

Snippet 2
memcpy (buf, p, len);

Snippet 1

void *memcpy (void *dst, const void * src, size t n);

typedef unsigned int size t;



Implicit Cast

If len is negative, may

* Consider this code: copy huge amounts of
char buf[80]; . :
void vulnerable () { input into but.
int len = read int from network();
char *p = read string from network();
1if (len > sizeof buf) {
error ("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;



Integer Overflow
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size t len = read int from network();
char *buf;

buf = malloc (len+b);

read (fd, buf, len):;

 What if len is large (e.g., len = OXFFFFFFFF)?
 Thenlen +5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
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http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

e Consider this code:

1f (access(“file”, W OK) != 0) {
exit(1l); // user not allowed to write to file

}

fd = open(“file”, O WRONLY) ;
write (fd, buffer, sizeof (buffer)):;

e Goal: Write to file only with permission
 What can go wrong?



TOCTOU (Race Condition)

e TOCTOU = “Time of Check to Tile of Use”

1f (access(“file”, W OK) != 0) {
exit(1l); // user not allowed to write to file

}

fd = open(“file”, O WRONLY) ;
write (fd, buffer, sizeof (buffer)):;

e Goal: Write to file only with permission

 Attacker (in another program) can change meaning of

“file” between access and open:
symlink ("/etc/passwd", "file");



Something Different: Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long
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Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars

for i =1 to 8 do
if (RealPwd[i]

!= CandidatePwd[i])

return FALSE

return TRUE

* Clearly meets functional description
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Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i])
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =
possibilities
* |s it possible to derive password more quickly?
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Try it

dkohlbre.com/cew



