
CSE 484: Computer Security and Privacy

Software Security:
More!

Spring 2023

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

4/6/2023 CSE484 - Spring 2023 1

Logistics

• HW1 due tonight

• 584 reading 1 due tonight

• Lab1 is out, start early!

4/6/2023 CSE484 - Spring 2023 2

Last time…

• Stack smashing and overwriting return pointers

• “Computing” with printf

4/6/2023 CSE484 - Spring 2023 3

4/6/2023 CSE484 - Spring 2023 4

Summary of Printf Risks

• Printf takes a variable number of arguments
• E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
• E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”

• Can be used to advance printf’s internal stack pointer

• Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal

stack pointer is pointing to at the time

• Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

4/6/2023 CSE484 - Spring 2023 5

How Can We Attack This?

foo() {

char buf[…];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??

4/6/2023 CSE484 - Spring 2023 6

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

4/6/2023 CSE484 - Spring 2023 7

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

The exploitation twilight zone

• During an exploitation attempt sometimes you have to ‘let it run’
• Overflow a buffer

• Change things

• Let program run for ‘a bit’

• Everything triggers!

• Printf exploit a perfect example

4/6/2023 CSE484 - Spring 2023 8

Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see assignments):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

4/6/2023 CSE484 - Spring 2023 9

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. Better interfaces
7. …

4/6/2023 CSE484 - Spring 2023 10

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

4/6/2023 CSE484 - Spring 2023 11

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

• BSD to the rescue: strlcpy
• size_t strlcpy(char *dest, const char *src, size_t n);

• Always NUL terminates

• Returns len(src) …

4/6/2023 CSE484 - Spring 2023 12

strlcpy – maybe not what we wanted

• How do you check truncation?

• Endless arguments, no glibc implementation (!)

• Programmers instead do this:
• #define strlcpy(dest,src,len) strncpy(dest,src,(len)-1)

4/6/2023 CSE484 - Spring 2023 13

Discussion

• What would you want a C string function to do from a safety
perspective?

• Remember: a C string is an array of bytes terminated with a NUL byte.

• There are no other properties!

4/6/2023 CSE484 - Spring 2023 14

strscpy – Maybe this one is good

• ssize_t strscpy(char *dest, const char *src, size_t count);
• NUL terminates no matter what

• Returns len(src)

4/6/2023 CSE484 - Spring 2023 15

Should I even care? C string functions?
Really?

4/6/2023 CSE484 - Spring 2023 16

Should I even care? C string functions?
Really?

4/6/2023 CSE484 - Spring 2023 17

• https://lwn.net/Articles/905777/

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

4/6/2023 CSE484 - Spring 2023 18

Pollev.com/dkohlbre

• What might an attacker be able to accomplish even if they cannot
execute code on the stack?

4/6/2023 CSE484 - Spring 2023 19

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space protection
will not block control transfer!
→ return-to-libc exploits

4/6/2023 CSE484 - Spring 2023 20

return-to-libc

• Overwrite saved ret (IP) with address of any library routine

• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• Canvas in-class activity, Oct 8!

4/6/2023 CSE484 - Spring 2023 21

return-to-libc

• Overwrite saved ret (IP) with address of any library routine

• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

4/6/2023 CSE484 - Spring 2023 22

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

4/6/2023 CSE484 - Spring 2023 23

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”

4/6/2023 CSE484 - Spring 2023 24

Return-Oriented Programming

4/6/2023 CSE484 - Spring 2023 25

Defense: Run-Time Checking: StackGuard

4/6/2023 CSE484 - Spring 2023 26

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

4/6/2023 CSE484 - Spring 2023 27

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

4/6/2023 CSE484 - Spring 2023 28

Defeating StackGuard

4/6/2023 CSE484 - Spring 2023 29

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

4/6/2023 CSE484 - Spring 2023 30

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

4/6/2023 CSE484 - Spring 2023 31

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

4/6/2023 CSE484 - Spring 2023 32

