
CSE 484: Computer Security and Privacy

Software Security:
Buffer Overflow Attacks and More

Spring 2023

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, David Kohlbrenner, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements + Logistics

• Things Due:
– HW1 on Friday

– 584 reading #1 on Friday

• Lab 1:
– Going out soon (tonight)

– This can be the same or different group from HW1 and other labs

• Office Hours:
– posted

10/5/2022 CSEp 564 - Fall 2022 2

Quick poll:

• What topics are you hoping we’ll cover?

• Pollev.com/dkohlbre

3

(SOME MORE OF) SOFTWARE SECURITY

10/5/2022 CSEp 564 - Fall 2022 4

Bugs, Vulnerabilities, and Exploits

• Bug

– Not working quite right

• Vulnerability

– A malfunction that can be used for an adversary’s goals

• Exploit

– The mechanical set of operations to make use of a vulnerability

10/5/2022 CSEp 564 - Fall 2022 5

Aside: The Weird Machine

• An exploit can also be considered a program for a weird
machine

• If you are more formally-inclined, check out:

– https://www.cs.dartmouth.edu/~sergey/wm/

10/5/2022 CSEp 564 - Fall 2022 6

Last time:

• Basic overflows

• Ended with managing to use strncpy wrong!

7

Consider this homebrewed copy:

10/5/2022 CSEp 564 - Fall 2022 8

void mycopy(char *input) {
char buffer[512];
int i;

for (i=0; i<=512; i++)
{

buffer[i] =
input[i];

}

}

Consider this homebrewed copy:

10/5/2022 CSEp 564 - Fall 2022 9

void mycopy(char *input) {
char buffer[512];
int i;

for (i=0; i<=512; i++)
{

buffer[i] =
input[i];

}

}

This will copy 513
characters into
buffer. Oops!

Off-By-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {
char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change pointer to previous
stack frame…
– On little-endian architecture, make it point into buT for previous function will be

read from buffer
10/5/2022 CSEp 564 - Fall 2022 10

This will copy 513
characters into
buffer. Oops!

Frame Pointer Overflow

10/5/2022 CSEp 564 - Fall 2022 11

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK

CODE

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored
in memory location P, then one can call F as (*P)(…)

10/5/2022 CSEp 564 - Fall 2022 12

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)

A note on assembly

• You will need to read some assembly

• Its all x86_32 assembly

• There are two syntaxes (I’m sorry)

10/5/2022 CSEp 564 - Fall 2022 13

Other Overflow Targets

• Format strings in C

– We’ll walk through this one today

• Heap management structures used by malloc()

– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺

10/5/2022 CSE 484 - Fall 2021 14

Variable Arguments in C

10/5/2022 CSE 484 - Fall 2021 15

• In C, can define a function with a variable number of
arguments
– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

10/5/2022 CSE 484 - Fall 2021 16

What happens if buffer
contains format symbols

starting with % ???

Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time

10/5/2022 CSE 484 - Fall 2021 17

This is simplified code,
e.g., handles %d but not

%10d

void printf(const char * format, ...)

{

int i; char c; char * s; double d;

va_list ap; /* declare an "argument pointer" to a variable arg list */

va_start(ap, format); /*initialize arg pointer using last known arg */

for (char *p = format; *p != '\0'; p++) {

if (*p == '%') {

switch (*++p) {

case 'd':

i = va_arg(ap, int); break;

case 's':

s = va_arg(ap, char*); break;

case 'c':

c = va_arg(ap, char); break;

... /* etc for each % specification */

}

}

}

...

va_end(ap); /* restore any special stack manipulations */

}

Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);

10/5/2022 CSE 484 - Fall 2021 18

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Internal stack
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Internal stack
pointer starts here

6

Format Strings in C

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

10/5/2022 CSE 484 - Fall 2021 19

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Format Strings in C

10/5/2022 CSE 484 - Fall 2021 20

What happens if buffer
contains format symbols

starting with % ???

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a
string

10/5/2022 CSE 484 - Fall 2021 21

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a
string

10/5/2022 CSE 484 - Fall 2021 22

Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as
address into which the number of characters will be written.

10/5/2022 CSE 484 - Fall 2021 24

Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”

– Can be used to advance printf’s internal stack pointer

– Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal

stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

10/5/2022 CSE 484 - Fall 2021 25

“Weird Machines”

• Way of thinking about exploits (the best way ☺)

• Treat each discrete side-effect as an ‘instruction’

• Synthesize a ‘program’ from these instructions

• This is now your exploit!

10/5/2022 CSE 484 - Fall 2021 26

How Can We Attack This?

foo() {

char buf[…];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?

10/5/2022 CSE 484 - Fall 2021 27

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s
frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Pollev and Discussion Time

foo() {

char buf[2048];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?

10/5/2022 CSE 484 - Fall 2021 28

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s
frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

10/5/2022 CSE 484 - Fall 2021 29

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Lab 1 will go out today

• Significant help from doing these readings:

– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities

10/5/2022 CSE 484 - Fall 2021 30

