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Announcements + Logistics

• Things Due:
– HW1 on Friday

– 584 reading #1 on Friday

• Lab 1:
– Going out soon (tonight)

– This can be the same or different group from HW1 and other labs

• Office Hours:
– posted
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Quick poll:

• What topics are you hoping we’ll cover?

• Pollev.com/dkohlbre
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(SOME MORE OF) SOFTWARE SECURITY
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Bugs, Vulnerabilities, and Exploits

• Bug

– Not working quite right

• Vulnerability

– A malfunction that can be used for an adversary’s goals

• Exploit

– The mechanical set of operations to make use of a vulnerability
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Aside: The Weird Machine

• An exploit can also be considered a program for a weird 
machine

• If you are more formally-inclined, check out:

– https://www.cs.dartmouth.edu/~sergey/wm/
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Last time:

• Basic overflows

• Ended with managing to use strncpy wrong!
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Consider this homebrewed copy:
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void mycopy(char *input) {
char buffer[512]; 
int i;

for (i=0; i<=512; i++) 
{

buffer[i] = 
input[i];

}

}



Consider this homebrewed copy:
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void mycopy(char *input) {
char buffer[512]; 
int i;

for (i=0; i<=512; i++) 
{

buffer[i] = 
input[i];

}

}

This will copy 513
characters into
buffer. Oops!



Off-By-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {
char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}
void main(int argc, char *argv[]) {

if (argc==2) 
mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change pointer to previous 
stack frame…
– On little-endian architecture, make it point into buT for previous function will be 

read from buffer
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This will copy 513
characters into
buffer. Oops!



Frame Pointer Overflow
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK 

CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored 
in memory location P, then one can call F as (*P)(…)
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attack code

Buffer with attacker-supplied 

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)



A note on assembly

• You will need to read some assembly

• Its all x86_32 assembly

• There are two syntaxes (I’m sorry)
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Other Overflow Targets

• Format strings in C

– We’ll walk through this one today

• Heap management structures used by malloc() 

– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺
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Variable Arguments in C
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• In C, can define a function with a variable number of 
arguments
– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others



Format Strings in C

• Proper use of printf format string:
int foo = 1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 

printf(buf);

// should’ve used printf(“%s”, buf);
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What happens if buffer 
contains format symbols 

starting with % ???



Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time
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This is simplified code, 
e.g., handles %d but not 

%10d

void printf(const char * format, ...)

{

int i; char c; char * s; double d;

va_list ap; /* declare an "argument pointer" to a variable arg list */

va_start(ap, format); /*initialize arg pointer using last known arg */

for (char *p = format; *p != '\0'; p++) {

if (*p == '%') {

switch (*++p) {

case 'd':

i = va_arg(ap, int); break;

case 's':

s = va_arg(ap, char*); break;

case 'c':

c = va_arg(ap, char); break;

... /* etc for each % specification */

}

}

}

...

va_end(ap); /* restore any special stack manipulations */

}



Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Internal stack 
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Internal stack 
pointer starts here

6



Format Strings in C

• Proper use of printf format string:
int foo=1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 

printf(buf);

// should’ve used printf(“%s”, buf);
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• Proper use of printf format string:
int foo=1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 

printf(buf);

// should’ve used printf(“%s”, buf);

If the buffer contains format symbols starting with %, the 
location pointed to by printf’s internal stack pointer will be 

interpreted as an argument of printf.  

This can be exploited to move printf’s internal stack pointer!

Format Strings in C
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What happens if buffer 
contains format symbols 

starting with % ???



Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int.  (What if 
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a 
string
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Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int.  (What if 
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a 
string
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Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters 
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;

printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as 
address into which the number of characters will be written.
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Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when 

buf=“Hello world %d”

– Can be used to advance printf’s internal stack pointer

– Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal 

stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location 

specified by whatever printf’s internal SP is pointing to at the time
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“Weird Machines”

• Way of thinking about exploits (the best way ☺)

• Treat each discrete side-effect as an ‘instruction’

• Synthesize a ‘program’ from these instructions

• This is now your exploit!
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How Can We Attack This?

foo() {

char buf[…];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s 
frame

If format string contains % then 
printf will expect to find 
arguments here…

Different compilers / 
compiler options / 

architectures might vary



Pollev and Discussion Time

foo() {

char buf[2048];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s 
frame

If format string contains % then 
printf will expect to find 
arguments here…

Different compilers / 
compiler options / 

architectures might vary



Using %n to Overwrite Return Address
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RET“… attackString%n”, attack code &RET

When %n happens, make sure the location 
under printf’s stack pointer contains address
of RET; %n will write the number of characters 
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be 
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf 
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “   10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte. 

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:



Lab 1 will go out today

• Significant help from doing these readings:

– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities
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