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Announcements + Logistics

• Things Due:
– Reading #1 today!

• Lab 1:
– Going out soon

– If you haven’t filled out the partner survey, we can’t help you with finding one!

• Office Hours:
– TBA

• Next week:
– Paper discussion at the beginning of class.
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Learning new languages/tools/etc

• Security often requires rapidly acclimating to new tech

• You don’t need mastery

• Running into a system/language/construct you don’t know is 
expected, and expected to be hard!

• Don’t understand a term in class? Ask!
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This week’s paper

• “Low-level Software Security: Attacks and Defenses”
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Last time…

• Threat models
– Assets

– Adversaries

– Vulnerabilities

– Threats

– Risks
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(SOME OF) SOFTWARE SECURITY
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Bugs, Vulnerabilities, and Exploits

• Bug
– Not working quite right

• Vulnerability
– A malfunction that can be used for an adversary’s goals

• Exploit
– The mechanical set of operations to make use of a vulnerability
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Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit them!
– Intelligent adversaries:  Force bugs into “worst possible” conditions/states

– Intelligent adversaries:  Pick their targets
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Aside: The Weird Machine

• An exploit can also be considered a program for a weird 
machine

• If you are more formally-inclined, check out:
– https://www.cs.dartmouth.edu/~sergey/wm/
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Many types of vulnerability

• Pollev.com/dkohlbre

• Talk to your neighbors, define one you’ve heard of (or ask 
about one you don’t know!)
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Memory Corruption Bugs

• Buffer overflows bugs:  Big class of bugs
– Normal conditions:  Can sometimes cause systems to fail

– Adversarial conditions:  Attacker able to violate security of your system 
(control, obtain private information, ...)

• Stack, Heap both possibilities
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A note on languages

• We’re going to be assuming code is written in an unsafe 
language
– Like C

• Fundamentally, we care about the executed binary
– So the language is sometimes immaterial
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BUFFER OVERFLOWS
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A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist
– Convicted under Computer Fraud and Abuse Act,    

• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly measure 
the size of the Internet

• Due to a coding error, it created new copies as fast as it could and 
overloaded infected machines

• $10-100M worth of damage
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Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow attack 
against a vulnerable version of fingerd on VAX systems
– By sending special string to finger daemon, worm caused it to execute code 

creating a new worm copy

Overflows remain a common source of vulnerabilities and exploits today! 

(Especially in embedded systems.)
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Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd
– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected
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… And More

• Conficker (2008-09): overflow in Windows RPC
– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC overflow 
as Conficker
– Windows print spooler service

– Windows LNK shortcut display

– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet
– Targeted cyperespionage virus

• These days, worms are uncommon
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Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory 
(stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-allocated buffer.

– The developer forgets to check that the size of the input isn’t larger than the size 
of the buffer.

– Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution
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Stack Buffers
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• Suppose Web server contains this function
void func(char *str) {

           char buf[126];
           ...
           strcpy(buf,str);
           ...
     }

• No bounds checking on strcpy()

• If str is longer than 126 bytes
– Program may crash

– Attacker may change program behavior

buf uh oh!



Example: Changing Flags
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• Suppose Web server contains this function
void func(char *str) {

           byte auth = 0;
           char buf[126];
           ...
           strcpy(buf,str);
           ...
     }

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated 
flag in fingerd

buf authenticated11 ( :-) ! )



Memory Layout

• Text region:  Executable code of the program

• Heap:  Dynamically allocated data

• Stack:  Local variables, function return addresses; grows and shrinks as 
functions are called and return

4/3/23 CSE 484 - Spring 2023 21

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



What happens on function call?
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Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



What happens on function call?
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Top BottomStack



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

           char buf[126];
           strcpy(buf,str);
     }

• When this function is invoked, a new frame (activation record) is pushed 
onto the stack.
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Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

           char buf[126];
           strcpy(buf,str);
     }

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.
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strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Executing Attack Code

• Suppose buffer contains attacker-created string
– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be 

    executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

4/3/23 CSE 484 - Spring 2023 26

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his 
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the 
location where the system expects to find return address

Caller’s framestr



Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of 
attack code in the RET position
– The value in the RET position must point to the beginning of attack 

assembly code in the buffer
• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer will 
be when the function is called
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Problem: No Bounds Checking

• strcpy does not check input size
– strcpy(buf, str) simply copies memory contents into buf starting from *str until 

“\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe
– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …) 
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Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)   

strncat(record,cpw,MAX_STRING_LEN-1);
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Copies username (“user”) into buffer (“record”), 
then appends “:” and hashed password (“cpw”)



Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)   

strncat(record,cpw,MAX_STRING_LEN-1);
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Copies username (“user”) into buffer (“record”), 
then appends “:” and hashed password (“cpw”)

Pollev Discussion Time



Consider these changes
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Apache 1.3 had the following code:
 
strcpy(record, user);
strcat(record, ”:”);
strcat(record, cpw);
 
The published fix:

strncpy(record, user, MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record, cpw, MAX_STRING_LEN-1);
 
Is this fix good?  If so, why?  If not, why not?



Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:

strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)   
strncat(record,cpw,MAX_STRING_LEN-1);
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MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer



Consider this homebrewed copy:
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void mycopy(char *input) {

char buffer[512]; 
int i;

for (i=0; i<=512; i++) {
buffer[i] = input[i];

}

}
 



Consider this homebrewed copy:
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void mycopy(char *input) {

char buffer[512]; 
int i;

for (i=0; i<=512; i++) {
buffer[i] = input[i];

}

}
 This will copy 513

characters into
buffer. Oops!



Off-By-One Overflow

• Home-brewed range-checking string copy
  

  void mycopy(char *input) {
            char buffer[512]; int i; 

             for (i=0; i<=512; i++)
                 buffer[i] = input[i]; 
        }
        void main(int argc, char *argv[]) {
             if (argc==2) 
                mycopy(argv[1]);
        }

• 1-byte overflow: can’t change RET, but can change pointer to previous 
stack frame…
– On little-endian architecture, make it point into buT for previous function will be 

read from buffer
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Frame Pointer Overflow
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored in 
memory location P, then one can call F as (*P)(…)
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attack code

Buffer with attacker-supplied 

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)



A note on assembly

• You will need to read some assembly

• Its all x86_32 assembly

• There are two syntaxes (I’m sorry)
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Shall we do one live?
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Other Overflow Targets

• Format strings in C 
– We’ll walk through this one today

• Heap management structures used by malloc() 
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺
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Variable Arguments in C
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• In C, can define a function with a variable number of 
arguments
– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

 %d,%i,%o,%u,%x,%X – integer argument
 %s – string argument
 %p – pointer argument (void *)
 Several others



Format Strings in C

• Proper use of printf format string:
int foo = 1234; 
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

  foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf);
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What happens if buffer 
contains format symbols 

starting with % ???



Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time
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This is simplified code, 
e.g., handles %d but not 

%10d



Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Internal stack 
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Internal stack 
pointer starts here

6



Format Strings in C

• Proper use of printf format string:
int foo=1234; 
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

  foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf);
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• Proper use of printf format string:
int foo=1234; 
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 

  foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf);

If the buffer contains format symbols starting with %, the 
location pointed to by printf’s internal stack pointer will be 

interpreted as an argument of printf.  

This can be exploited to move printf’s internal stack pointer!

Format Strings in C
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What happens if buffer 
contains format symbols 

starting with % ???



Break!

• Back at:

• Think about varargs (printf) calls…
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Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int.  (What if 
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a 
string
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Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int.  (What if 
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a 
string
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Try This At Home

#include <stdio.h>

int main()
{
    char *buf = "%08x\t%08x\t%08x\t%08x\n";
    printf(buf);
}

Compiled with gcc
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Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters 
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as 
address into which the number of characters will be written.
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Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when 

buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal 
stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location 

specified by whatever printf’s internal SP is pointing to at the time
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“Weird Machines”

• Way of thinking about exploits (the best way ☺)

• Treat each discrete side-effect as an ‘instruction’

• Synthesize a ‘program’ from these instructions

• This is now your exploit!
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How Can We Attack This?

foo() {
char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then 
printf will expect to find 
arguments here…

Different compilers / 
compiler options / 

architectures might vary



Pollev and Discussion Time

foo() {
char buf[2048];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then 
printf will expect to find 
arguments here…

Different compilers / 
compiler options / 

architectures might vary



Using %n to Overwrite Return Address
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RET“… attackString%n”, attack code &RET

When %n happens, make sure the location 
under printf’s stack pointer contains address
of RET; %n will write the number of characters 
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be 
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf 
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “   10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
 to overwrite the return address byte-by-byte. 

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:



Lab 1 will go out soon

• Significant help from doing these readings:
– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities

• I’ll go through partner requests shortly

• Live example of sploit0 next week at the beginning of class
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