
CSE 484: Computer Security

Software Security:
Buffer Overflow Attacks and More

Spring 2023

David Kohlbrenner
dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, David Kohlbrenner, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements + Logistics

• Things Due:
– Reading #1 today!

• Lab 1:
– Going out soon

– If you haven’t filled out the partner survey, we can’t help you with finding one!

• Office Hours:
– TBA

• Next week:
– Paper discussion at the beginning of class.

4/3/23 CSEp 564 - Fall 2022 2

Learning new languages/tools/etc

• Security often requires rapidly acclimating to new tech

• You don’t need mastery

• Running into a system/language/construct you don’t know is
expected, and expected to be hard!

• Don’t understand a term in class? Ask!

4/3/23 CSE 484 - Spring 2023 3

This week’s paper

• “Low-level Software Security: Attacks and Defenses”

4/3/23 CSE 484 - Spring 2023 4

Last time…

• Threat models
– Assets

– Adversaries

– Vulnerabilities

– Threats

– Risks

4/3/23 CSE 484 - Spring 2023 5

(SOME OF) SOFTWARE SECURITY

4/3/23 CSE 484 - Spring 2023 6

Bugs, Vulnerabilities, and Exploits

• Bug
– Not working quite right

• Vulnerability
– A malfunction that can be used for an adversary’s goals

• Exploit
– The mechanical set of operations to make use of a vulnerability

4/3/23 CSE 484 - Spring 2023 7

Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit them!
– Intelligent adversaries: Force bugs into “worst possible” conditions/states

– Intelligent adversaries: Pick their targets

4/3/23 CSE 484 - Spring 2023 8

Aside: The Weird Machine

• An exploit can also be considered a program for a weird
machine

• If you are more formally-inclined, check out:
– https://www.cs.dartmouth.edu/~sergey/wm/

4/3/23 CSE 484 - Spring 2023 9

Many types of vulnerability

• Pollev.com/dkohlbre

• Talk to your neighbors, define one you’ve heard of (or ask
about one you don’t know!)

4/3/23 CSE 484 - Spring 2023 10

Memory Corruption Bugs

• Buffer overflows bugs: Big class of bugs
– Normal conditions: Can sometimes cause systems to fail

– Adversarial conditions: Attacker able to violate security of your system
(control, obtain private information, ...)

• Stack, Heap both possibilities

4/3/23 CSE 484 - Spring 2023 11

A note on languages

• We’re going to be assuming code is written in an unsafe
language
– Like C

• Fundamentally, we care about the executed binary
– So the language is sometimes immaterial

4/3/23 CSE 484 - Spring 2023 12

BUFFER OVERFLOWS

4/3/23 CSE 484 - Spring 2023 13

A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist
– Convicted under Computer Fraud and Abuse Act,

• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly measure
the size of the Internet

• Due to a coding error, it created new copies as fast as it could and
overloaded infected machines

• $10-100M worth of damage

4/3/23 CSE 484 - Spring 2023 14

Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow attack
against a vulnerable version of fingerd on VAX systems
– By sending special string to finger daemon, worm caused it to execute code

creating a new worm copy

Overflows remain a common source of vulnerabilities and exploits today!

(Especially in embedded systems.)

4/3/23 CSE 484 - Spring 2023 15

Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd
– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected

4/3/23 CSE 484 - Spring 2023 16

… And More

• Conficker (2008-09): overflow in Windows RPC
– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC overflow
as Conficker
– Windows print spooler service

– Windows LNK shortcut display

– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet
– Targeted cyperespionage virus

• These days, worms are uncommon

4/3/23 CSE 484 - Spring 2023 17

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory
(stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-allocated buffer.

– The developer forgets to check that the size of the input isn’t larger than the size
of the buffer.

– Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution

4/3/23 CSE 484 - Spring 2023 18

Stack Buffers

4/3/23 CSE 484 - Spring 2023 19

• Suppose Web server contains this function
void func(char *str) {

 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

• No bounds checking on strcpy()

• If str is longer than 126 bytes
– Program may crash

– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

4/3/23 CSE 484 - Spring 2023 20

• Suppose Web server contains this function
void func(char *str) {

 byte auth = 0;
 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated
flag in fingerd

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks as
functions are called and return

4/3/23 CSE 484 - Spring 2023 21

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

What happens on function call?

4/3/23 CSE 484 - Spring 2023 22

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

What happens on function call?

4/3/23 CSE 484 - Spring 2023 23

Top BottomStack

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

• When this function is invoked, a new frame (activation record) is pushed
onto the stack.

4/3/23 CSE 484 - Spring 2023 24

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

4/3/23 CSE 484 - Spring 2023 25

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Executing Attack Code

• Suppose buffer contains attacker-created string
– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be

 executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

4/3/23 CSE 484 - Spring 2023 26

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the
location where the system expects to find return address

Caller’s framestr

Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of
attack code in the RET position
– The value in the RET position must point to the beginning of attack

assembly code in the buffer
• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer will
be when the function is called

4/3/23 CSE 484 - Spring 2023 27

Problem: No Bounds Checking

• strcpy does not check input size
– strcpy(buf, str) simply copies memory contents into buf starting from *str until

“\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe
– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …)

4/3/23 CSE 484 - Spring 2023 28

Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)

strncat(record,cpw,MAX_STRING_LEN-1);

4/3/23 CSE 484 - Spring 2023 29

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)

strncat(record,cpw,MAX_STRING_LEN-1);

4/3/23 CSE 484 - Spring 2023 30

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

Pollev Discussion Time

Consider these changes

4/3/23 CSE 484 - Spring 2023 31

Apache 1.3 had the following code:

strcpy(record, user);
strcat(record, ”:”);
strcat(record, cpw);

The published fix:

strncpy(record, user, MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record, cpw, MAX_STRING_LEN-1);

Is this fix good? If so, why? If not, why not?

Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:

strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

4/3/23 CSE 484 - Spring 2023 32

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

Consider this homebrewed copy:

4/3/23 CSE 484 - Spring 2023 33

void mycopy(char *input) {

char buffer[512];
int i;

for (i=0; i<=512; i++) {
buffer[i] = input[i];

}

}

Consider this homebrewed copy:

4/3/23 CSE 484 - Spring 2023 34

void mycopy(char *input) {

char buffer[512];
int i;

for (i=0; i<=512; i++) {
buffer[i] = input[i];

}

}
 This will copy 513

characters into
buffer. Oops!

Off-By-One Overflow

• Home-brewed range-checking string copy

 void mycopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 mycopy(argv[1]);
 }

• 1-byte overflow: can’t change RET, but can change pointer to previous
stack frame…
– On little-endian architecture, make it point into buT for previous function will be

read from buffer
4/3/23 CSE 484 - Spring 2023 35

Frame Pointer Overflow

4/3/23 CSE 484 - Spring 2023 36

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK CODE

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored in
memory location P, then one can call F as (*P)(…)

4/3/23 CSEp 564 - Fall 2022 37

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)

A note on assembly

• You will need to read some assembly

• Its all x86_32 assembly

• There are two syntaxes (I’m sorry)

4/3/23 CSEp 564 - Fall 2022 38

Shall we do one live?

4/3/23 CSEp 564 - Fall 2022 39

Other Overflow Targets

• Format strings in C
– We’ll walk through this one today

• Heap management structures used by malloc()
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺

4/3/23 CSE 484 - Fall 2021 40

Variable Arguments in C

4/3/23 CSE 484 - Fall 2021 41

• In C, can define a function with a variable number of
arguments
– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

 %d,%i,%o,%u,%x,%X – integer argument
 %s – string argument
 %p – pointer argument (void *)
 Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

 foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

4/3/23 CSE 484 - Fall 2021 42

What happens if buffer
contains format symbols

starting with % ???

Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time

4/3/23 CSE 484 - Fall 2021 43

This is simplified code,
e.g., handles %d but not

%10d

Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);

4/3/23 CSE 484 - Fall 2021 44

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Internal stack
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Internal stack
pointer starts here

6

Format Strings in C

• Proper use of printf format string:
int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

 foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

4/3/23 CSE 484 - Fall 2021 45

• Proper use of printf format string:
int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

 foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Format Strings in C

4/3/23 CSE 484 - Fall 2021 46

What happens if buffer
contains format symbols

starting with % ???

Break!

• Back at:

• Think about varargs (printf) calls…

4/3/23 CSEp 564 - Fall 2022 47

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a
string

4/3/23 CSE 484 - Fall 2021 48

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if
crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a
string

4/3/23 CSE 484 - Fall 2021 49

Try This At Home

#include <stdio.h>

int main()
{
 char *buf = "%08x\t%08x\t%08x\t%08x\n";
 printf(buf);
}

Compiled with gcc

4/3/23 CSE 484 - Fall 2021 50

Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted as
address into which the number of characters will be written.

4/3/23 CSE 484 - Fall 2021 51

Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal
stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

4/3/23 CSE 484 - Fall 2021 52

“Weird Machines”

• Way of thinking about exploits (the best way ☺)

• Treat each discrete side-effect as an ‘instruction’

• Synthesize a ‘program’ from these instructions

• This is now your exploit!

4/3/23 CSE 484 - Fall 2021 53

How Can We Attack This?

foo() {
char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?

4/3/23 CSE 484 - Fall 2021 54

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Pollev and Discussion Time

foo() {
char buf[2048];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain?

4/3/23 CSE 484 - Fall 2021 55

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

4/3/23 CSE 484 - Fall 2021 56

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
 to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Lab 1 will go out soon

• Significant help from doing these readings:
– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities

• I’ll go through partner requests shortly

• Live example of sploit0 next week at the beginning of class

4/3/23 CSE 484 - Fall 2021 57

