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Logistics

• Grades for Lab3 patches and FP RCAs in progress
• We’ll have these back in time for you to make changes next week

• FP patch files:
• Please turn in the patch file our tool generates!
• If you copy-paste it out/modify it/retype it/rename this gums up autograders

• Patching:
• An acceptable patch for any of the bugs is generally 1 to 15 lines of code
• A perfect patch is anywhere from 3 to 200. Plan accordingly!
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Course feedback!

Please fill it out!

I’ll step out for a few minutes.

https://uw.iasystem.org/survey/274579
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Mobile devices
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What is the difference?

• Mobile devices (smartphones)

• Tablets

• Laptops

• Desktops

• Servers
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A surprising difference

Mobile security is really really good
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Why?
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.
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Apps can do anything the UID 
they’re running under can do.



What’s Different about Mobile Platforms?

• Applications are isolated
• Each runs in a separate execution context

• No default access to file system, devices, etc.

• Different than traditional OSes where multiple applications run with the 
same user permissions!

• App Store: approval process for applications
• Market: Vendor controlled/Open

• App signing: Vendor-issued/self-signed

• User approval of permissions 
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Why isolate on mobile devices and not PCs?

• Application isolation is great!

• Phones drew lessons from desktops

• Desktops draw lessons from phones

• Browsers learning too

• App Isolation sometimes available for PCs
• Windows 10 Sandbox (May 2019)
• Prerequisites

• Windows 10 May 2019 update version 1903 installed
• Hardware virtualization enabled
• Windows 10 Pro or Enterprise

• Browsers: Site Isolation
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More Details: Android

• Based on Linux

• Application sandboxes
• Applications run as                                                                                                   

separate UIDs, in separate processes.

• Memory corruption errors only

lead to arbitrary code execution

in the context of the particular

application, not complete system compromise!

• (Can still escape sandbox – but must 
compromise Linux kernel to do so.)  allows 
rooting
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Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive resources?

2. Communication: How can applications communicate with each 
other?

5/30/2023 CSE 484 - Spring 2023 15



Mobile Malware: Threat Modeling

Q1: How might malware authors get malware onto phones? 

Q2: What are some goals that mobile device malware authors might 
have, or technical attacks they might attempt? How might this differ 
from desktop settings?
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What can go wrong?
“Threat Model” 1: Malicious applications

5/30/2023 CSE 484 - Spring 2023 17



What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
• Premium SMS messages 

• Track location

• Record phone calls

• Log SMS 

• Steal data

• Phishing  
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Some of these are unique 
to phones (SMS, rich 

sensor data)



What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
• User data is leaked or stolen 

• (on phone, on network, on server)

• Application is hijacked by an attacker
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(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by 
limiting applications’ access to:
– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.
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How should operating system grant 
permissions to applications?



Android’s old approach: Manifests

• Big list of things the app wants at install time

5/30/2023 CSE 484 - Spring 2023 21



Are Manifests Usable?

Do users pay attention to permissions?
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[Felt et al.]

… but 88% of users looked at reviews.



Are Manifests Usable?

Do users understand the warnings?
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Are Manifests Usable?

Do users act on permission information?

“Have you ever not installed an app because of permissions?”
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State of the Art
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Prompts (time-of-use) Manifests (install-time, old model)



State of the Art (iOS)

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/accessing-user-data/
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(2) Inter-Process Communication

• Primary mechanism in Android: Intents
• Sent between application components

• e.g., with startActivity(intent)

• Explicit: specify component name
• e.g., com.example.testApp.MainActivity

• Implicit: specify action (e.g., ACTION_VIEW) and/or data 
(URI and MIME type)
• Apps specify Intent Filters for their components.
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Eavesdropping and Spoofing

• Buggy apps might accidentally:
• Expose their component-to-component messages publicly → eavesdropping

• Act on unauthorized messages they receive      → spoofing
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Permission Re-Delegation

• An application without a 
permission gains additional 
privileges through another 
application.

• Settings application is deputy: has 
permissions, and accidentally 
exposes APIs that use those 
permissions.
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API

Settings

Demo 
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]



Other Android Security Features

• Secure hardware

• Full disk encryption

• Modern memory protections (e.g., ASLR, non-executable stack)

• Application signing

• App store review
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File Permissions

• Files written by one application cannot be read by other applications
• Previously, this wasn’t true for files stored on the SD card (world readable!) –

Android cracked down on this

• It is possible to do full file system encryption
• Key = Password/PIN combined with salt, hashed
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Memory Management

• Address Space Layout Randomization to randomize addresses on 
stack

• Hardware-based No eXecute (NX) to prevent code execution on 
stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on OpenBSD’s
dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]
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Android Fragmentation
• Many different variants of 

Android (unlike iOS)
• Motorola, HTC, Samsung, …

• Less secure ecosystem
• Inconsistent or incorrect 

implementations

• Slow to propagate kernel 
updates and new versions

• Many changes made in past few 
years (e.g. Project Treble)

[https://developer.android.com/about/dashboa
rds/index.html] 
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Rooting and Jailbreaking

• Allows user to run applications with root privileges
• e.g., modify/delete system files, app management, CPU management, 

network management, etc.

• Done by exploiting vulnerability in firmware to install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
• Doesn’t allow “side-loading” apps, etc.
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What about iOS?

• Apps are sandboxed

• Encrypted user data
• Often in the news…

• App Store review process is 
(was? maybe?) stricter
• But not infallible: e.g., see Wang 

et al. “Jekyll on iOS: When 
Benign Apps Become Evil” 
(USENIX Security 2013)
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• No “sideloading” apps

– Unless you jailbreak



iOS model vs Android

• Monolithic vs fragmented

• Closed vs open

• Single distributor vs many
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Lessons Being Learned from Other Spaces

• Mobile phone platforms built on lessons learned from desktops

• Desktops and Browsers learning from Mobile phones

• Overall, trying to increase security for all platforms
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