
CSE 484: Computer Security and Privacy

Mobile Devices

Spring 2023

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner,
Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others
for sample slides and materials ...

5/30/2023 CSE 484 - Spring 2023 1

Logistics

• Grades for Lab3 patches and FP RCAs in progress
• We’ll have these back in time for you to make changes next week

• FP patch files:
• Please turn in the patch file our tool generates!
• If you copy-paste it out/modify it/retype it/rename this gums up autograders

• Patching:
• An acceptable patch for any of the bugs is generally 1 to 15 lines of code
• A perfect patch is anywhere from 3 to 200. Plan accordingly!

5/30/2023 CSE 484 - Spring 2023 2

Course feedback!

Please fill it out!

I’ll step out for a few minutes.

https://uw.iasystem.org/survey/274579

5/30/2023 CSE 484 - Spring 2023 3

https://uw.iasystem.org/survey/274579

Mobile devices

5/30/2023 CSE 484 - Spring 2023 4

What is the difference?

• Mobile devices (smartphones)

• Tablets

• Laptops

• Desktops

• Servers

5/30/2023 CSE 484 - Spring 2023 5

A surprising difference

Mobile security is really really good

5/30/2023 CSE 484 - Spring 2023 6

A surprising difference

Mobile security is really really good

5/30/2023 CSE 484 - Spring 2023 7

Why?

5/30/2023 CSE 484 - Spring 2023 8

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

5/30/2023 CSE 484 - Spring 2023 9

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

5/30/2023 CSE 484 - Spring 2023 10

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

5/30/2023 CSE 484 - Spring 2023 11

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
• Each runs in a separate execution context

• No default access to file system, devices, etc.

• Different than traditional OSes where multiple applications run with the
same user permissions!

• App Store: approval process for applications
• Market: Vendor controlled/Open

• App signing: Vendor-issued/self-signed

• User approval of permissions

5/30/2023 CSE 484 - Spring 2023 12

Why isolate on mobile devices and not PCs?

• Application isolation is great!

• Phones drew lessons from desktops

• Desktops draw lessons from phones

• Browsers learning too

• App Isolation sometimes available for PCs
• Windows 10 Sandbox (May 2019)
• Prerequisites

• Windows 10 May 2019 update version 1903 installed
• Hardware virtualization enabled
• Windows 10 Pro or Enterprise

• Browsers: Site Isolation

5/30/2023 CSE 484 - Spring 2023 13

More Details: Android

• Based on Linux

• Application sandboxes
• Applications run as

separate UIDs, in separate processes.

• Memory corruption errors only

lead to arbitrary code execution

in the context of the particular

application, not complete system compromise!

• (Can still escape sandbox – but must
compromise Linux kernel to do so.)  allows
rooting

5/30/2023 CSE 484 - Spring 2023 14

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive resources?

2. Communication: How can applications communicate with each
other?

5/30/2023 CSE 484 - Spring 2023 15

Mobile Malware: Threat Modeling

Q1: How might malware authors get malware onto phones?

Q2: What are some goals that mobile device malware authors might
have, or technical attacks they might attempt? How might this differ
from desktop settings?

5/30/2023 CSE 484 - Spring 2023 16

What can go wrong?
“Threat Model” 1: Malicious applications

5/30/2023 CSE 484 - Spring 2023 17

What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
• Premium SMS messages

• Track location

• Record phone calls

• Log SMS

• Steal data

• Phishing

5/30/2023 CSE 484 - Spring 2023 18

Some of these are unique
to phones (SMS, rich

sensor data)

What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
• User data is leaked or stolen

• (on phone, on network, on server)

• Application is hijacked by an attacker

5/30/2023 CSE 484 - Spring 2023 19

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by
limiting applications’ access to:
– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

5/30/2023 CSE 484 - Spring 2023 20

How should operating system grant
permissions to applications?

Android’s old approach: Manifests

• Big list of things the app wants at install time

5/30/2023 CSE 484 - Spring 2023 21

Are Manifests Usable?

Do users pay attention to permissions?

5/30/2023 CSE 484 - Spring 2023 22

[Felt et al.]

… but 88% of users looked at reviews.

Are Manifests Usable?

Do users understand the warnings?

5/30/2023 CSE 484 - Spring 2023 23

[Felt et al.]

Are Manifests Usable?

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

5/30/2023 CSE 484 - Spring 2023 24

[Felt et al.]

State of the Art

5/30/2023 CSE 484 - Spring 2023 25

Prompts (time-of-use) Manifests (install-time, old model)

State of the Art (iOS)

https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/accessing-user-data/
5/30/2023 CSE 484 - Spring 2023 26

(2) Inter-Process Communication

• Primary mechanism in Android: Intents
• Sent between application components

• e.g., with startActivity(intent)

• Explicit: specify component name
• e.g., com.example.testApp.MainActivity

• Implicit: specify action (e.g., ACTION_VIEW) and/or data
(URI and MIME type)
• Apps specify Intent Filters for their components.

5/30/2023 CSE 484 - Spring 2023 27

Eavesdropping and Spoofing

• Buggy apps might accidentally:
• Expose their component-to-component messages publicly → eavesdropping

• Act on unauthorized messages they receive → spoofing

5/30/2023 CSE 484 - Spring 2023 28

[Chin et al.]

Permission Re-Delegation

• An application without a
permission gains additional
privileges through another
application.

• Settings application is deputy: has
permissions, and accidentally
exposes APIs that use those
permissions.

5/30/2023 CSE 484 - Spring 2023 29

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

Other Android Security Features

• Secure hardware

• Full disk encryption

• Modern memory protections (e.g., ASLR, non-executable stack)

• Application signing

• App store review

5/30/2023 CSE 484 - Spring 2023 31

File Permissions

• Files written by one application cannot be read by other applications
• Previously, this wasn’t true for files stored on the SD card (world readable!) –

Android cracked down on this

• It is possible to do full file system encryption
• Key = Password/PIN combined with salt, hashed

5/30/2023 CSE 484 - Spring 2023 32

Memory Management

• Address Space Layout Randomization to randomize addresses on
stack

• Hardware-based No eXecute (NX) to prevent code execution on
stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on OpenBSD’s
dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]

5/30/2023 CSE 484 - Spring 2023 33

http://source.android.com/tech/security/index.html

Android Fragmentation
• Many different variants of

Android (unlike iOS)
• Motorola, HTC, Samsung, …

• Less secure ecosystem
• Inconsistent or incorrect

implementations

• Slow to propagate kernel
updates and new versions

• Many changes made in past few
years (e.g. Project Treble)

[https://developer.android.com/about/dashboa
rds/index.html]

5/30/2023 CSE 484 - Spring 2023 34

Rooting and Jailbreaking

• Allows user to run applications with root privileges
• e.g., modify/delete system files, app management, CPU management,

network management, etc.

• Done by exploiting vulnerability in firmware to install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
• Doesn’t allow “side-loading” apps, etc.

5/30/2023 CSE 484 - Spring 2023 35

What about iOS?

• Apps are sandboxed

• Encrypted user data
• Often in the news…

• App Store review process is
(was? maybe?) stricter
• But not infallible: e.g., see Wang

et al. “Jekyll on iOS: When
Benign Apps Become Evil”
(USENIX Security 2013)

5/30/2023 CSE 484 - Spring 2023 36

• No “sideloading” apps

– Unless you jailbreak

iOS model vs Android

• Monolithic vs fragmented

• Closed vs open

• Single distributor vs many

5/30/2023 CSE 484 - Spring 2023 37

Lessons Being Learned from Other Spaces

• Mobile phone platforms built on lessons learned from desktops

• Desktops and Browsers learning from Mobile phones

• Overall, trying to increase security for all platforms

5/30/2023 CSE 484 - Spring 2023 38

