
CSE 484 : Computer Security and Privacy

Web Security
[Web Application Security]

Winter 2021

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials
...

mailto:dkohlbre@cs.washington.edu

Admin

• Lab 2
• Granting access on a regular basis

• Please sign up if you haven’t already

• Final project
• First checkpoint deadline TODAY!

2/17/2021 CSE 484 - Winter 2021 2

SQL Injection

2/17/2021 CSE 484 - Winter 2021 3

SQL Injection: Basic Idea

2/17/2021 CSE 484 - Winter 2021 4

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query

• Special case of command injection

Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” & form(“user”) & “ ′ AND

password= ‘ ” & form(“pwd”) & “ ′ ”);

User supplies username and password, this SQL query checks if

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail

2/17/2021 CSE 484 - Winter 2021 5

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

Cross-Site Request Forgery
(CSRF/XSRF)

2/17/2021 CSE 484 - Winter 2021 6

Cookie-Based Authentication Redux

2/17/2021 CSE 484 - Winter 2021 7

ServerBrowser

Browser Sandbox Redux

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!

2/17/2021 CSE 484 - Winter 2021 8

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=badguy> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can
happen

2/17/2021 CSE 484 - Winter 2021 9

Cookies in Forged Requests

2/17/2021 CSE 484 - Winter 2021 10

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?

2/17/2021 CSE 484 - Winter 2021 12

XSRF True Story

2/17/2021 CSE 484 - Winter 2021 13

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

XSRF (aka CSRF): Summary

2/17/2021 CSE 484 - Winter 2021 14

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an
honest server

• Server thinks requests are part of the established session between the
browser and the server (automatically sends cookies)

2/17/2021 CSE 484 - Winter 2021 15

XSRF Defenses

2/17/2021 CSE 484 - Winter 2021 16

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded

in user’s browser, so can’t create fake forms with correct token

2/17/2021 CSE 484 - Winter 2021 17

<input type=hidden value=23a3af01b>

Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required

2/17/2021 CSE 484 - Winter 2021 18

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

✓

?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF
defenses today

2/17/2021 CSE 484 - Winter 2021 19

Bonus topic:
Consider the network

2/17/2021 CSE 484 - Winter 2021 20

Where Does the Attacker Live?

CSE 484 - Winter 2021

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Network attacker

• Lives between you and your destination server
• Person-in-the-middle

• Person-on-the-side

• Passive/active

• Physical/remote

2/17/2021 CSE 484 - Winter 2021 22

2/17/2021 CSE 484 - Winter 2021 23

TREVOR PAGLEN

185.jpg

NSA-Tapped Undersea Cables, North Pacific Ocean, 2016

What might they be interested in?

• Eavesdropping

• Making us talk to the wrong server

• Denial-of-service

• Corrupting our conversation with a real server

2/17/2021 CSE 484 - Winter 2021 24

Background: DNS

2/17/2021 CSE 484 - Winter 2021 25

Who is www.google.com?

Who is .com?
Who is
google.com?

Who is
www.google.com?

172.217.14.228

172.217.14.228

HTTP Start!

Google Land

DNS is unauthenticated and over UDP

• 16-bit ‘request ID’
• Used to be sequential

• Now random

• Reply is cleartext and ‘simple’

2/17/2021 CSE 484 - Winter 2021 26

DNS Hijacking

2/17/2021 CSE 484 - Winter 2021 27

Who is www.google.com?
Request-id:3

172.217.14.228

Google Land

Reply-id: 1
555.555.555.555

Reply-id: 2
555.555.555.555

Reply-id: 3
555.555.555.555

Reply-id: 4
555.555.555.555

555.555.555.555

HTTP Start!
www.google.com cookies

http://www.google.com/
http://www.google.com/

Throwback: Birthday Paradox

• Are there two people in the first 1/8 of this class that
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person. To find another person with same birthday would
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.

2/17/2021 CSE 484 - Winter 2021 28

DNS Hijacking Continued

• 16-bit ID: 2^8 for collision (256!)

• How do we get the victim to as for www.google.com?
• How about “notreal.google.com” instead?

2/17/2021 CSE 484 - Winter 2021 29

http://www.google.com/

DNS Hijacking

2/17/2021 CSE 484 - Winter 2021 30

Who is notreal.google.com?
Request-id:3

Google Land

Reply-id: 1,2,3,4…
555.555.555.555

555.555.555.555

HTTP Start!
*.google.com cookies

<iframe src=“http://notreal.google.com”>

http://www.google.com/
http://www.google.com/

The state of DNS

• Randomize:
• Request ID

• Port number

• … hope!

2/17/2021 CSE 484 - Winter 2021 31

Network security

• All our protocols weren’t built for security

• DNS

• BGP

• DHCP

• …

2/17/2021 CSE 484 - Winter 2021 32

