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Admin

• Lab 2
• Granting access on a regular basis

• Please sign up if you haven’t already

• Final project
• First checkpoint deadline TODAY!
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SQL Injection
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SQL Injection: Basic Idea

2/17/2021 CSE 484 - Winter 2021 4

Victim server

Victim SQL DB

Attacker

unintended 
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end 

database changes the meaning of query

• Special case of command injection



Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” &  form(“user”) & “ ′ AND   

password= ‘ ” &  form(“pwd”) & “ ′ ” );

User supplies username and password, this SQL query checks if 

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail
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Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database



Cross-Site Request Forgery
(CSRF/XSRF)
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Cookie-Based Authentication Redux
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ServerBrowser



Browser Sandbox Redux

• Based on the same origin policy (SOP)

• Active content (scripts) can send anywhere!
• For example, can submit a POST request

• Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
• … but you can do a lot with just sending!
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Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

• User then visits a malicious website containing
<form  name=BillPayForm

action=http://bank.com/BillPay.php>

<input  name=recipient value=badguy> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side effects can 
happen
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Cookies in Forged Requests
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User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Impact

• Hijack any ongoing session (if no protection)
• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click 

purchase

• Reprogram the user’s home router

• Login to the attacker’s account
• Why?
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XSRF True Story
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[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications 



XSRF (aka CSRF): Summary
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Attack server

Server victim 

User victim
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Q: how long do you stay logged on to Gmail?  Financial sites?



Broader View of XSRF

• Abuse of cross-site data export
• SOP does not control data export

• Malicious webpage can initiates requests from the user’s browser to an 
honest server

• Server thinks requests are part of the established session between the 
browser and the server (automatically sends cookies)
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XSRF Defenses
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• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
• Token often based on user’s session ID

• Server must verify correctness of token before executing sensitive operations

• Why does this work?
• Same-origin policy: attacker can’t read token out of legitimate forms loaded 

in user’s browser, so can’t create fake forms with correct token
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<input type=hidden value=23a3af01b>



Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required

2/17/2021 CSE 484 - Winter 2021 18

Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 

✓



?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
• Stripped by the organization’s network filter

• Stripped by the local machine

• Stripped by the browser for HTTPS → HTTP transitions

• User preference in browser

• Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today
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Bonus topic: 
Consider the network
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Where Does the Attacker Live?
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Network

Browser

OS

Hardware

websiterequest

reply
Web 

attacker

Network 
attacker

Malware 
attacker

Mitigation: SSL/TLS 
(not covered further)



Network attacker

• Lives between you and your destination server
• Person-in-the-middle

• Person-on-the-side

• Passive/active

• Physical/remote
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TREVOR PAGLEN

185.jpg

NSA-Tapped Undersea Cables, North Pacific Ocean, 2016



What might they be interested in?

• Eavesdropping

• Making us talk to the wrong server

• Denial-of-service

• Corrupting our conversation with a real server
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Background: DNS
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Who is www.google.com?

Who is .com?
Who is 
google.com?

Who is 
www.google.com?

172.217.14.228

172.217.14.228

HTTP Start!

Google Land



DNS is unauthenticated and over UDP

• 16-bit ‘request ID’
• Used to be sequential

• Now random

• Reply is cleartext and ‘simple’
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DNS Hijacking
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Who is www.google.com?
Request-id:3

172.217.14.228

Google Land

Reply-id: 1
555.555.555.555

Reply-id: 2
555.555.555.555

Reply-id: 3
555.555.555.555

Reply-id: 4
555.555.555.555

555.555.555.555

HTTP Start!
www.google.com cookies

http://www.google.com/
http://www.google.com/


Throwback: Birthday Paradox

• Are there two people in the first 1/8 of this class that 
have the same birthday?
• 365 days in a year (366 some years)

• Pick one person.  To find another person with same birthday would 
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value 
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.
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DNS Hijacking Continued

• 16-bit ID: 2^8 for collision (256!)

• How do we get the victim to as for www.google.com?
• How about “notreal.google.com” instead?
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http://www.google.com/


DNS Hijacking
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Who is notreal.google.com?
Request-id:3

Google Land

Reply-id: 1,2,3,4…
555.555.555.555

555.555.555.555

HTTP Start!
*.google.com cookies

<iframe src=“http://notreal.google.com”>

http://www.google.com/
http://www.google.com/


The state of DNS

• Randomize:
• Request ID

• Port number

• … hope!
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Network security

• All our protocols weren’t built for security 

• DNS

• BGP

• DHCP

• …
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