Usable Security [finish] & Physical Security

Spring 2016

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Question

• Q. What are the root causes of usability issues in computer security?
Why is Usable Security Hard?

1. Lack of intuition
 - See a safe, understand threats. Not true for computers.

2. Who’s in charge?
 - Doctors keep your medical records safe, you manage your passwords.

3. Hard to gauge risks
 - “It would never happen to me!”

4. No accountability
 - Asset-holder is not the only one you can lose assets.

5. Awkward, annoying, or difficult

6. Social issues
Question

• Q. What approaches can we take to mitigate usability issues in computer security?
Response #1: Education and Training

• Education:
 – Teaching technical concepts, risks

• Training
 – Change behavior through:
 • Drill
 • Monitoring
 • Feedback
 • Reinforcement
 • Punishment

• May be part of the solution – but not the solution
Response #2: Security Should Be Invisible

• Security should happen
 – Naturally
 – By Default
 – Without user input or understanding

• Recognize and stop bad actions

• Starting to see some invisibility
 – SSL/TLS
 – VPNs
 – Automatic Security Updates
 – User-driven access control
Response #2: Security Should Be Invisible

• “Easy” at extremes, or for simple examples
 – Don’t give everyone access to everything

• But hard to generalize

• Leads to things not working for reasons user doesn’t understand

• Users will then try to get the system to work, possibly further reducing security
 – E.g., “dangerous successes” for password managers
Response #3: "3 Word UI": "Are You Sure?"

- Security should be invisible
 - Except when the user tries something dangerous
 - In which case a warning is given

- But how do users evaluate the warning? Two realistic cases:
 - Always heed warning. But see problems / commonality with Response #2 ("security should be invisible")
 - Always ignore the warning. If so, then how can it be effective?
Response #4: Focus on Users, Use Metaphors

- Clear, understandable metaphors:
 - Physical analogs; e.g., red-green lights

- User-centered design: Start with user model

- Unified security model across applications
 - User doesn’t need to learn many models, one for each application

- Meaningful, intuitive user input
 - Don’t assume things on user’s behalf
 - Figure out how to ask so that user can answer intelligently
Response #5: Least Resistance

• “Match the most comfortable way to do tasks with the least granting of authority”
 – Ka-Ping Yee, Security and Usability

• Should be “easy” to comply with security policy

• “Users value and want security and privacy, but they regard them only as secondary to completing the primary tasks”
 – Karat et al, Security and Usability
Now: Physical Security

• Relate physical security to computer security
 – Locks, safes, etc
• Why?
 – More similar than you might think!
 – Lots to learn:
 • Computer security issues are often abstract; hard to relate to
 • But physical security issues are often easier to understand
 – Hypothesis:
 • Thinking about the “physical world” in new (security) ways will help you further develop the “security mindset”
 • You can then apply this mindset to computer systems, …
Lockpicking

• The following slides will not be online.

• But if you’re interested in the subject, we recommend:
 – Blaze, “Cryptology and Physical Security: Rights Amplification in Master-Keyed Mechanical Locks”
 – Blaze, “Safecracking for the Computer Scientist”
 – Tobias, “Opening Locks by Bumping in Five Seconds or Less”

• Careful: possessing lock picks is legal in Washington State, but not everywhere!