CSE 484 /| CSE M 584 - Homework 2

This homework is focused on cryptography.

Overview

e Due Date: Friday, May 6, 2016, 8pm.

e Group or Individual: Do this assignment as an individual. But you are allowed to talk
with others in advance of actually doing the assignment.

e How to Submit: Submit a PDF to Catalyst. Your assignment does not need to be
entirely typed / developed with computer software. You could hand-write your
assignment, and hand-draw some diagrams, and then submit a PDF scan of your
hand-written assignment, just make sure it is legible.

e Total Points: 46 (+12 extra credit)

Q1 (3 points). What is the main concern cryptographers have with the Encrypt-and-MAC
method for combining a symmetric encryption scheme with a symmetric MAC to create a
symmetric authenticated encryption scheme?

Q2 (5 points). This message was encrypted with the RSA primitive, where N=33 and e=3.
Decrypt it and submit the corresponding plaintext.

Tips: You are welcome to write a program to aid in the decryption, and you might want to
compute the private decryption exponent d.

For this cryptogram ‘A’ is encoded as a 1 before encryption, ‘B’ as a 2, and so on.

Here is the cryptogram: 14 17 328 27 24 1641491324 1192312826527 24164 14 26
3123314171417262428142431931432226

Q3 (8 points). The following question has you use RSA, but with larger values (but still not
anywhere close to the size of the numbers one would use in a secure cryptographic protocol like
TLS/SSL).

You may use a program that you write, Wolfram Alpha, or any other computer program to help
you solve this problem.

For all of these, it is sufficient to just include your number in the answer, unless the question
explicitly asks for additional detail.

https://www.wolframalpha.com/

Let p=9497 and q=7187 and e = 3.

Compute N =p *q. Whatis N?

Compute Phi(N) = (p-1)(g-1). What is Phi(N)?

Verify that e is relatively prime to Phi(N). What method did you use to verify this?
Compute d as the inverse of e modulo Phi(N). What is d?

Encrypt the value P = 12345678 with the RSA primitive and the values for N and e above.
Let C be the resulting ciphertext. What is C?

e Verify that you can decrypt C using d as the private exponent to get back P. What method
did you use to verify this?

e Decrypt the value C’' = 12345679 using the RSA primitive and your values for N and d
above. Let P’ be the resulting plaintext. What is P’?

e Verify that you can encrypt P’ using e as the public exponent to get back C’. What method
did you use to verify this?

Q4 (5 points). Suppose you, as an attacker, observe the following 32-byte (3-block) ciphertext
C1 (in hex)

00 00 00 00 OO OO OO 0O 0O 00 00 0O 00 00O 0O 03
46 64 DC 06 97 BB FE 69 33 07 15 07 9B A6 C2 3D
2B 84 DE 4F 90 8D 7D 34 AA CE 96 8B 64 F3 DF 75

and the following 32-byte (3-block) ciphertext C2 (also in hex)

00 00 00 00 OO0 OO OO 0O 00O 00 00 0O 00 00 00O 03
51 7E CC 05 C3 BD EA 3B 33 57 OE 1B D8 97 D5 30
7B DO 91 6B 8D 82 6B 35 B7 8B BB 8D 74 E2 C7 3B

Suppose you know these ciphertexts were generated using CTR mode, where the first block of
the ciphertext is the initial counter value for the encryption. You also know that the plaintext P1
corresponding to C1 is

43 72 79 70 74 6F 67 72 61 70 68 79 20 43 72 79
70 74 6F 67 72 61 70 68 79 20 43 72 79 70 74 6F

Compute the plaintext P2 corresponding to the ciphertext C2. Submit P2 as your response,
using the same formatting as above (in hex, with a space between each byte).

Q5 (5 points). Consider an insecure version of SSH that uses ECB mode for encryption.
Whenever a user types a key into the ssh client, that key is immediately encrypted and sent
over the wire to the server. This immediate encrypt-after-key-press procedure is what enables
the interactivity of a remote shell. Now consider the following sequence of plaintext packets
(written in hex):

P1=6C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII I

P2 =73 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCll s

P3 =20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII space

P4 =2A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII *

P5 =2D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII -

P6 =66 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII f

P7 =72 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII r

P8 = 6F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCll o

P9 = 6D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII m

P10 = 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // ASCII <enter>

This corresponds to a user typing “Is *-from<enter>" into their ssh client.

Suppose an attacker knows what the user is typing via some out-of-band channel (e.g.,
shoulder surfing) and also eavesdrops on this communications and intercepts the corresponding
ciphertexts:

C1=4E B6 48 B2 EO BE A5 B1 21 2F 07 54 DF CF A4 39
C2=11707865 88 89 06 62 82 0C OA 6A 55 6F 87 46
C3=EF 7F 1F 25 3E 99 98 8D 1A FC BE 7TA D9 D6 ED 7E
C4=5B402B 18 0B 94 E8 13 DA F3 DE 21 A0 27 2E C4
C5=9380191F 06 B4 4B 199D 70 86 28 34 12 26 DC
C6 =68 74 EB 1B 16 5F 70 45 05 29 B9 66 0A CC D3 6C
C7=56 E8 77 E1 7TE BF 01 1927 87 03 FE E1 1D 65 A8
C8=9D 37 51 FO 68 C8 F7 BA 44 B2 E9 5C 09 94 1D 5A
C9 =62 30 38 8F A4 D7 C1 68 56 88 CE 2C 29 2D F5 23
C10=D589 74 7TE 45 89 08 FA 5B 63 98 42 E6 B2 31 85

The attacker can now inject messages into the communications channel from the client to the
server. One thing an attacker might try to do: generate a sequence of ciphertext packets that,
when decrypted, are interpreted as “rm -rf *<enter>" on the server. Give such a sequence of
ciphertext packets in your answer below.

Q6 (3 points). Consider a Diffie-Hellman key exchange with p=29 and g=2. Suppose that Alice
picks x=5 and Bob picks y=3. What will each party send to the other, and what shared key will
they agree on? Show your work.

Q7 (6 points). Below we give you the entry for a password stored on a Linux machine. The
password is weak. Your task: find the password.

To do this, we recommend using either john or hashcat. We strongly recommend using Linux for
this question (Use attu or a VM if you don’t have a native Linux). You can likely install John the
Ripper from the repository using apt-get or yum. The Linux package name is most likely john,
e.g., for Ubuntu, run “sudo apt-get install john”. Otherwise, you can download john and build it
from source (you will have to use this option if you are using attu, during build specify the
architecture as linux-x86-64): John the Ripper 1.8.0 (sources, tar.gz, 5.2 MB) and its signature

Here is the password entry, from a Linux machine:

ahaha:6FItSjGy$54laMBy6 ThxAbvnUztWzrl4FjtEwn1sX81/V8LI7PtMpPAiy57QM4q.o
yUD2cHFL4nwhguDk7eP7c3t0ArKep.:16769:0:99999:7:::

Q8 (4 points). The goal of this task is to give you a better understanding of Certificate
Authorities (CA) and certificates.

Take a look at the CAs certificates that your computer trusts.
e Mac: Spotlight search ‘Keychain Access’
e Windows: Control Panel -> Search ‘Internet Options’ -> Content -> Certificates

Answer these questions:
1. How many root CA certificates does your computer have?
2. What is something that you found interesting from looking at the root CA certificates?
3. Go to google.com using your favorite browser, and find a way to look at the certificates
for google.com. List the chain of certificates your browser sees.
4. What is a possible risk of trusting a CA?

Q9 (10 points). For this task, the goal is to give you experience with sending encrypted emails.
To successfully complete this task, you will need to set up your email client and send/receive an
encrypted email to/from the TAs. For this assignment, you can reach your super secret agent
TA “Batman” at brucewayne@uwctf.ninja.

Setup information

Setting up your email client to send encrypted emails is a bit complicated, and the following link
is helpful if you don’t want to follow the recommended setup below or you know what you are
doing: How to Encrypt Your Email and Keep Your Conversations Private

http://www.openwall.com/john/
http://hashcat.net/oclhashcat/
http://www.openwall.com/john/j/john-1.8.0.tar.gz
http://www.openwall.com/john/j/john-1.8.0.tar.gz.sign
http://www.openwall.com/john/h/john179w2.sig
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
mailto:brucewayne@uwctf.ninja
http://lifehacker.com/how-to-encrypt-your-email-and-keep-your-conversations-p-1133495744

Recommended setup

We found that using Mailvelope extension for the browser is easiest since you will be able to
use your Gmail web client.

1.

Get Mailvelope, which works with Chrome or Firefox. The rest of this guide assumes you
are using Chrome.

Once installed, you should see a * » icon on the top right corner of the browser, click
on it then click ‘Options’

Generate a key for yourself
o Name: Your name
o Email: The email address you're using for this part of the assignment
o Password: Optional but recommended password to secure your key

Import Batman’s public key from here by pasting the contents into Mailvelope (Options
-> Import Keys)

You are now set up! Go to your email page, hit Compose and you should see
Click on it to start composing an encrypted email, click ‘encrypt’ when you are done.

You will see a dialog box that allows you to choose who you want to encrypt the email
for. Make sure to click “Add” and my key is in the “Encrypt for: ” field! Note that you can
“Encrypt for: “ you and me.

<

Batman <brucewayne@uwctf.ninja>

Encrypt for:

Batman <brucewayne@uwctf.ninja> Delete

Using the email account that you associated with your key above (note that you will
NOT get a response if your email account and key don’t match), send an email to
the TA in this format:

To: brucewayne@uwctf.ninja

Subject: [CSE 484] Encrypted email

Content: Whatever secret message you’d like to send us :)

Attachment: <your public key> (Select your key from ‘Display Keys’ on the Mailvelope
site, and export the public key only. Download <yourkey> pub.asc and attach it.)

https://www.mailvelope.com/
https://www.google.com/chrome/browser/desktop/
http://courses.cs.washington.edu/courses/cse484/16sp/homework/Batman_pub.asc

Once you are OK with the contents, hit encrypt, select the correct key for the recipient and
transfer the encrypted contents.

Note: In order for the TA to send you an encrypted email, you will need to attach your public
key with your email.

If you don’t want to use your main email account, you can use this with a throw away email
address inside a virtual machine.

Once the TA receives this email, a secret reply will be sent back to you. Submit the content of
this email to your writeup.

Though we have an automated bot to respond to your emails, please start early on this in
case we have to fall back to a manual process. Please email the TA at least 48 hours before
the deadline.

Deliverables

1. The email address you used
2. Secret value provided by the TA
3. Answers to short answer questions
a. Does this process (PGP encryption) involve the use of symmetric or asymmetric
encryption or both?
b. We recommended a browser extension for ease of use, but what are the security
risks of enabling this browser extension? (Hint: what permissions did the
extension ask for during install?)

Extra Credit 1 (6 points). Download the required files here: link

(a) What is the modulus for the RSA pubkey? In your answer, explain how you obtained the
modulus. We recommend using command line openssl on Linux. Hint: Run openssl rsa --help.
You will have to give OpenSSL an input file, tell it what type of file (e.g., public key or private
key), and tell it what to output. (Also remember the course’s Gilligan’s Island rule, and the fact
that you can talk with others in class.)

(b) Factor this RSA modulus and give us the factors in format p=?, q=? (p < q). In your answer,
explain how you factored the modulus.
We recommend the following options:

1. use Sage Math to factor,

e.g., print factor(<number>). To use Sage Math, you need to create an account, start a new
worksheet, and then run the worksheet; you might test with small numbers; to factor the full
modulus may take some time (e.g., start before a meal and check afterwards)

2. use yafu. You might need to compile from source if you choose this

3. use factordb. (Note that factor db only recognize Decimal Number)

(c) Generate the private key and decrypt the encrypted message. What'’s the decrypted
message? In your answer, explain how you generated the private key and provide the
decrypted message. You might use rsatool.py to generate private key once you figure out the
factors and use openssl to decrypt it.

Hint: Run python rsatool.py --help to find out your options when generating private key

Run openssl rsautl --help to find out how to decrypt a file using a private key

For rsautl, you will need to tell it the input file (the encrypted file), tell it to decrypt, and tell
it what private key to use.

For rsatool.py, on the departmental machines you may need to set up a virtual python
environment with the following, before running rsatool.py (if you use C shell, run source
<environment_name>/bin/activate.csh instead):

virtualenv <enviroment_name>
source <environement_name>/bin/activate
pip install pyasn1 gmpy

http://128.208.6.104/rsa.zip
https://cloud.sagemath.com/
http://sourceforge.net/projects/yafu/
http://www.factordb.com/
https://github.com/ius/rsatool

Extra Credit 2 (6 points). | have a secret backdoor on my mail server, it allows you to create
profiles. However, there’s some functionality that only admins are able to perform. ECB is my
favorite block cipher mode!

The service is available here: 128.208.6.104:31713. Find the flag.
You can download the server code here: link

If you use netcat, then run the following to connect
nc 128.208.6.104 31713

(I have timeout for the service, so it might be hard to solve the problem without scripting)
(If you are scripting and don’t want to deal with raw sockets, then try pwnlib)

There are hints down there in white color! Read it if you need it.

http://128.208.6.104/backdoor.py
https://github.com/Gallopsled/pwntools

