CSE 484 / CSE M 584: Computer Security and Privacy

XSS attacks

Fall 2016

Ada (Adam) Lerner
lerner@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Administrative

• Lab 2 is out – please form groups of 1-3 and get to work, it’s due Nov 21!

• Details will be coming in the next couple days on the final project!
OWASP Top 10 Web Vulnerabilities

1. Injection
2. Broken Authentication & Session Management
3. Cross-Site Scripting
4. Insecure Direct Object References
5. Security Misconfiguration
6. Sensitive Data Exposure
7. Missing Function Level Access Control
8. Cross-Site Request Forgery
9. Using Known Vulnerable Components
10. Unvalidated Redirects and Forwards
CSRF

• “Confused Deputy” – the browser acts with Alice’s privileges (cookies) even when directed to make requests by an attacker

• Defenses:
 – Form synchronization tokens
 – Referer header checking
Cross-Site Scripting (XSS)
XSS

• I have a friend with a really hard to pronounce name.

XSS

• XSS is about the problems that arise when you have a name that just happens to be a HTML tag
PHP: Hypertext Processor

- Server scripting language with C-like syntax
PHP: Hypertext Processor

• Can intermingle static HTML and code

```html
<input value='<?php echo $myvalue; ?>' />
```
PHP: Hypertext Processor

• Can intermingle static HTML and code

 <input value="<?php echo $myvalue; ?>">

• Can embed variables in double-quote strings

 $user = "world"; echo "Hello $user!";
 or $user = "world"; echo "Hello" . $user . "!";
PHP: Hypertext Processor

• Can intermingle static HTML and code

 <input value=<<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

 $user = “world”; echo “Hello $user!”;
 or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, ...
Echoing / “Reflecting” User Input

Classic mistake in server-side applications

search.php responds with
<html> <title>Search results</title> <body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob
hello.cgi responds with
<html>Welcome, dear Bob</html>
Echoing / “Reflecting” User Input

naive.com/hello.cgi?name=Bob

Welcome, dear Bob

Cross-Site Scripting (XSS)

Access some web page

Forces victim’s browser to call hello.cgi on naive.com with this script as “name”

GET/ steal.cgi?cookie=

interpreted as JavaScript by victim’s browser; opens window and calls steal.cgi on evil.com

GET/ hello.cgi?name=

Interpreted as JavaScript by victim’s browser; opens window and calls steal.cgi on evil.com

<?php
setcookie("SECRET_COOKIE", "12345");
header("X-XSS-Protection: 0");
?>
<html><body>

<form action="vulnerable.php" method="get">
Name: <input type="text" name="name" size="80">
<input type="submit" value="submit"></form>

<div id="greeting">
<?php
$name = $_GET["name"];
if($name) { echo "Welcome ". $_GET['name'];}
?>
</div></body></html>

Need to explicitly disable XSS protection – newer browsers try to help web developers avoid these vulnerabilities!
Reflected XSS

• User is tricked into visiting an honest website
 – Phishing email, link in a banner ad, comment in a blog
• Bug in website code causes it to echo to the user’s browser an arbitrary attack script
 – The origin of this script is now the website itself!
• Script can manipulate website contents (DOM) to show bogus information, request sensitive data, control form fields on this page and linked pages, cause user’s browser to attack other websites
 – This violates the “spirit” of the same origin policy
Basic Pattern for Reflected XSS

1. visit web site
2. receive malicious page
3. click on evil link
4. echo "user" input
5. send valuable data

User victim

Server victim

Attack server
Where Malicious Scripts Lurk

• User-created content
 – Social sites, blogs, forums, wikis

• When visitor loads the page, website displays the content and visitor’s browser executes the script
 – Many sites try to filter out scripts from user content, but this is difficult!
Stored XSS

1. **Inject malicious script**
2. **request content**
3. **receive malicious script**
4. **steal valuable data**

Attack server

Server victim

User victim

Users view or download content

Store bad stuff
Twitter Worm (2009)

- Can save URL-encoded data into Twitter profile
- Data **not** escaped when profile is displayed
- Result: StalkDaily XSS exploit
 - If view an infected profile, script infects your own profile

```javascript
var update = urlencode("Hey everyone, join www.StalkDaily.com. It's a site like Twitter but with pictures, videos, and so much more! ");
var ajaxConn = new XHConn();
ajaxConn.connect("/status/update", "POST", "authenticity_token="+authtoken +"&status="+update+"&tab=home&update=update");
ajaxConn1.connect("/account/settings", "POST", "authenticity_token="+authtoken +"&user[url]="+xss+"&tab=home&update=update")
```

Q3

naive.com/hello.cgi?name=Bob

Welcome, dear Bob

Welcome, dear

Welcome, dear Bob

Welcome, dear

Defenses: Cross-Site Scripting (XSS)

• Any user input and client-side data must be preprocessed before it is used inside HTML
• Remove / encode HTML special characters
 – Use a good escaping library
 • OWASP ESAPI (Enterprise Security API)
 • Microsoft’s AntiXSS
 – In PHP, htmlspecialchars(string) will replace all special characters with their HTML codes
 • ‘ becomes &\#039; “ becomes " & becomes &)
 – In ASP.NET, Server.HtmlEncode(string)
With appropriate defenses

naive.com/hello.cgi?
name=Bob

Welcome, dear Bob

With filters in place

• `<html>Welcome, dear Bob</html>`

Evading XSS Filters

• Preventing injection of scripts into HTML is hard!
 – Blocking “<” and “>” is not enough
 – Event handlers, stylesheets, encoded inputs (%3C), etc.
 – phpBB allowed simple HTML tags like \texttt{}
 \texttt{<b c=“>” onmouseover=“script” x=“<b ”>Hello}

Evading XSS Filters

• Filter evasion tricks (XSS Cheat Sheet)
 – If filter allows quoting (of `<script>`, etc.), beware of malformed quoting: ``<SCRIPT>alert("XSS")</SCRIPT>`>
 – Long UTF-8 encoding
 – Scripts are not only in `<script>`:
 `<iframe src='https://bank.com/login’ onload='steal()’>`
MySpace Worm (1)

• Users can post HTML on their MySpace pages
• MySpace does not allow scripts in users’ HTML
 – No <script>, <body>, onclick,
• ... but does allow <div> tags for CSS.
 – <div style="background:url(‘javascript:alert(1)’)">
• But MySpace will strip out “javascript”
 – Use “java<NEWLINE>script” instead
• But MySpace will strip out quotes
 – Convert from decimal instead:
 alert('double quote: ' + String.fromCharCode(34))
MySpace Worm (2)

Resulting code:

```html
<http://namb.la/popular/tech.html

MySpace Worm (2)

Resulting code:

```
MySpace Worm (3)

• “There were a few other complications and things to get around. This was not by any means a straight forward process, and none of this was meant to cause any damage or piss anyone off. This was in the interest of..interest. It was interesting and fun!”

• Started on “samy” MySpace page

• Everybody who visits an infected page, becomes infected and adds “samy” as a friend and hero

• 5 hours later “samy” has 1,005,831 friends
 – Was adding 1,000 friends per second at its peak
Command Injection and SQL Injection
Recall: PHP

• Server scripting language with C-like syntax
• Can intermingle static HTML and code

 <input value=\<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings
 $user = “world”; echo “Hello $user!”;
 or $user = “world”; echo “Hello”. $user . “!”;

• Form data in global arrays $_GET, $_POST, ...
Command Injection in PHP

copy.php includes

```
system("cp temp.dat $name.dat")
```
Command Injection in PHP

copy.php includes

```
system("cp temp.dat $name.dat")
```

Attacker uses name “a; rm*”

http://victim.com/copy.php?name="a; rm *"

copy.php executes

```
system("cp temp.dat a; rm *.dat");
```
SQL

- Widely used database query language
- Fetch a set of records
 \[
 \text{SELECT * FROM Person WHERE Username='lerner'}
 \]
- Add data to the table
 \[
 \text{INSERT INTO Key (Username, Key) VALUES ('lerner', 3611BBFF)}
 \]
- Modify data
 \[
 \text{UPDATE Keys SET Key=FA33452D WHERE PersonID=5}
 \]
- Query syntax (mostly) independent of vendor
Naïve Query Generation Code

```php
$selecteduser = $_GET['user'];
$sql = "SELECT Username, Key FROM Key " . "WHERE Username='\$selecteduser'";
$rs = $db->executeQuery($sql);
```

What if `user` is a malicious string that changes the meaning of the query?
Typical Login Prompt
User Input Becomes Part of Query

Web browser (Client) → Enter Username & Password → Web server

SELECT passwd FROM USERS WHERE uname IS ‘$user’ → DB
Normal Login

Web browser (Client) → Enter Username & Password → Web server → SELECT passwd FROM USERS WHERE uname IS ‘franzi’ → DB
Malicious User Input
SQL Injection Attack

Web browser (Client) → Enter Username & Password → Web server

SELECT passwd FROM USERS WHERE uname IS ‘’; DROP TABLE USERS; --’

Web server → DB

Eliminates all user accounts
Exploits of a Mom

http://xkcd.com/327/
SQL Injection: Basic Idea

1. **Attacker** post malicious form
2. **Victim server** unintended query
3. **Victim SQL DB** receive data from DB

- This is an **input validation vulnerability**
 - Unsanitized user input in SQL query to back-end database changes the meaning of query
- Special case of command injection
Authentication with Backend DB

set UserFound = execute(
 "SELECT * FROM UserTable WHERE
 username=' ' & form("user") & ' ' AND
 password=' ' & form("pwd") & ' ');

User supplies username and password, this SQL query checks if user/password combination is in the database

If not UserFound.EOF
 Authentication correct
else Fail

Only true if the result of SQL query is not empty, i.e., user/pwd is in the database
Using SQL Injection to Log In

• User gives username ‘’ OR 1=1 --
• Web server executes query

 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=‘’ OR 1=1 -- ...
);

• Now all records match the query, so the result is not empty ⇒ correct “authentication”!
Preventing SQL Injection

• Validate all inputs
 – Filter out any character that has special meaning
 • Apostrophes, semicolons, percent, hyphens, underscores, …
 • Use escape characters to prevent special characters form becoming part of the query code
 – E.g.: escape(O’Connor) = O\’Connor
 – Check the data type (e.g., input must be an integer)
Prepared Statements

```java
 PreparedStatement ps =
    db.prepareStatement("SELECT pizza, toppings, quantity, order_day 
        + "FROM orders WHERE userid=? AND order_month=?");
    ps.setInt(1, session.getCurrentUserUserId());
    ps.setInt(2, Integer.parseInt(request.getParameter("month")));
    ResultSet res = ps.executeQuery();
```

- **Bind variables**: placeholders guaranteed to be data (not code)
- Query is parsed without data parameters
- Bind variables are typed (int, string, ...)

Top Web Vulnerabilities: Summary

• XSRF (CSRF) – cross-site request forgery
 – Bad website forces the user’s browser to send a request to a good website

• XSS (CSS) – cross-site scripting
 – Malicious code injected into a trusted context (e.g., malicious data presented by an honest website interpreted as code by the user’s browser)

• SQL injection
 – Malicious data sent to a website is interpreted as code in a query to the website’s back-end database