
Whitebox Fuzzing
David Molnar

Microsoft Research

Problem: Security Bugs in File Parsers

Hundreds of file formats are
supported in Windows, Office, et al.

Many written in C/C++

Programming errors security bugs!

Random choice of x: one chance in 2^32 to find error
“Fuzz testing” Widely used, remarkably effective!

Core idea:
1) Pick an arbitrary “seed” input
2) Record path taken by program executing on “seed”
3) Create symbolic abstraction of path and generate tests

Example:
1) Pick x to be 5
2) Record y = 5+3 = 8, record program tests “8 ?= 13”
3) Symbolic path condition: “x + 3 != 13”

How SAGE Works
void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Create new constraints to cover new paths

Solve new constraints new inputs

Path constraint:

good

goo!

bood

gaod

godd

 I0=‘b’

 I1=‘a’

 I2=‘d’

 I3=‘!’

Gen 1

MSR’s Z3

constraint solver

How SAGE Works
void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

input = “bood”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Create new constraints to cover new paths

Solve new constraints new inputs

Path constraint:

goo!

bood

gaod

godd

 I0=‘b’

 I1=‘a’

 I2=‘d’

 I3=‘!’

Gen 1

…

baod

…

Gen 2

…

…

badd

Gen 3

bad!

…

Gen 4

SAGE finds the crash!

input = “baod”input = “badd”input = “bad!”

Work with x86 binary code on Windows
Leverage full-instruction-trace recording

Pros:
• If you can run it, you can analyze it
• Don’t care about build processes
• Don’t care if source code available

Cons:
• Lose programmer’s intent (e.g. types)
• Hard to “see” string manipulation,

memory object graph manipulation, etc.

Hand-written models (so far)
Uses Z3 support for non-linear operations

Normally “concretize” memory accesses where
address is symbolic

Check for
Crashes

(AppVerifier)

Code
Coverage
(Nirvana)

Binary
Analysis to
Generate

Constraints
(TruScan)

Solve
Constraints

(Z3)

Input0
Coverage

Data
Constraints

Input1

Input2
…

InputN

SAGE: A Whitebox Fuzzing Tool

Research Behind SAGE

• Precision in symbolic execution: PLDI’05, PLDI’11

• Scaling to billions of instructions: NDSS’08

• Checking many properties together: EMSOFT’08

• Grammars for complex input formats: PLDI’08

• Strategies for dealing with path explosion: POPL’07, TACAS’08, POPL’10, SAS’11

• Reasoning precisely about pointers: ISSTA’09

• Floating-point instructions: ISSTA’10

• Input-dependent loops: ISSTA’11

+ research on constraint solvers (Z3)

Challenges: from Research to Production

1) Symbolic execution on long traces

2) Fast constraint generation and solving

3) Months-long searches

4) Hundreds of test drivers & file formats

5) Fault-tolerance

A Single Symbolic Execution of an Office App

of instructions executed 1.45 billion

instructions after reading from file 928 million

constraints in path constraint 25,958

constraints dropped due to optimizations 438,123

of satisfiable constraints new tests 2,980

of unsatisfiable constraints 22,978

of constraint solver timeouts (> 5 seconds) 0

Symbolic execution time 45 minutes 45 seconds

Constraint solving time 15 minutes 53 seconds

SAGAN and SAGECloud for Telemetry and Management

Hundreds of machines / VMs on average
Hundreds of applications on thousands of “seed files”

Over 500 machine-years of whitebox fuzzing!

Challenges: From Research to Production

1) Symbolic execution on long traces
SAGAN telemetry points out imprecision

2) Fast constraint generation and solving
SAGAN sends back long-running constraints

3) Months-long searches
JobCenter monitors progress of search

4) Hundreds of test drivers & file formats
JobCenter provisions apps and configurations in SAGECloud

5) Fault-tolerance
SAGAN telemetry enables quick response

Feedback From Telemetry At Scale

0

5000

10000

15000

20000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

How much sharing
between symbolic
execution of different
programs run on
Windows?

Key Analyses Enabled by Data

Imprecision in Symbolic Execution

Distribution of crashes in the search

Days

New crashes
found

Constraints generated by symbolic execution

symbolic
executions

constraints

Time to solve constraints

Seconds

constraints

Optimizations In Constraint Generation

• Sound
• Common subexpression elimination on every new constraint

• Crucial for memory usage

• “Related Constraint Optimization”

• Unsound
• Constraint subsumption

• Syntactic check for implication, take strongest constraint

• Drop constraints at same instruction pointer after threshold

Ratio between SAT and UNSAT constraints

% constraints SAT

symbolic
executions

Long-running tasks can be pruned!

Sharing Between Symbolic Executions

Sampled runs on Windows, many different file-reading applications
Max frequency 17761, min frequency 592

Total of 290430 branches flipped, 3360 distinct branches

• Redundancy in searches
• Redundancy in paths

• Redundancy in different versions of same application

• Redundancy across applications
• How many times does Excel/Word/PPT/… call mso.dll ?

• Summaries (POPL 2007): avoid re-doing this unnecessary work

• SAGAN data shows redundancy exists in practice

Summaries Leverage Sharing

IF…THEN…ELSE

Reflections

• Data invaluable for driving investment priorities
• Can’t cover all x86 instructions by hand – look at which ones are used!
• Recent: synthesizing circuits from templates (Godefroid & Taly PLDI 2012)
• Plus finds configuration errors, compiler changes, etc. impossible otherwise

• Data can reveal test programs have special structure

• Scaling to long traces needs careful attention to representation
• Sometimes run out of memory on 4 GB machine with large programs

• Even incomplete, unsound analysis useful because whole-program
• SAGE finds bugs missed by all other methods

• Supporting users & partners super important, a lot of work!

Impact In Numbers

• 100s of apps, 100s of bugs fixed

• 3.5+ billion constraints
• Largest computational usage ever for any SMT solver

• 500+ machine-years

SAGE-like tools outside Microsoft

• KLEE http://klee.github.io/klee/

• FuzzGrind http://esec-lab.sogeti.com/pages/Fuzzgrind

• SmartFuzz

Thanks to all SAGE contributors!
MSR

CSE

Interns

Z3 (MSR):

Windows

Office

MSEC

SAGE users all across Microsoft!

Questions? dmolnar@microsoft.com

