
Fuzzing Tools
Jenny Kang

High-level overview

A pretty slide deck that does a good job of
explaining browser fuzzing approaches on a
high level

Another slide deck on DOM fuzzing

https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0ZW50YWNvbG92aW9sYXxneDo1MzYzZjdkOWZhYmMwZWEy
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Rosario_Valotta_-_Taking_Browsers_Fuzzing_to_the_next_(DOM)_Level.pdf

Peach
(Windows version)

PeachPit

● is an XML file
○ describes the data type/relationship (Data Model)
○ describes the strategy for fuzzing (State Model)
○ specifies the test environment (publishers, agents,

loggers, etc.)
■ sets the target we’d like to fuzz

PeachPit Data Models

● PeachPit contains Data Model(s) to
describe the structure of the data used in
fuzzing
○ to be reused when generating new test inputs
○ Can further be split into blocks
○ defines structure of data, including child elements

Source

http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/images/HTTP_RequestMessageExample.png
http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/images/HTTP_RequestMessageExample.png

PeachPit State Models

● PeachPit contains State Model(s)
○ <State> is a building block consisting of <Actions>

■ at least one state (ex. an ‘initial state’) and one
model

○ <Action> actually performs some action such as
sending a request or reading data
■ <Data> child element of <Action> can specify

default dataset to use in model

To Review...

Data Models

State Models

What is the
structure/format of

your data?

State
Action

Action

...

State
Action

Action

...

Other components of PeachPit
● Agents -- host local or remote Monitors, which are

responsible for monitoring what’s going on while fuzzing
(i.e. logging crashes)

● Publishers -- think of them as I/O managers
responsible for sending/receiving data.
○ <Action> in a state model sends commands to the

publisher
● Test Block -- Configuration for a test case such as

specifying agents, publishers, loggers, etc.
● Run Block -- deprecated in Peach 3?

http://old.peachfuzzer.com/v3/AgentsMonitors.html
http://old.peachfuzzer.com/v3/Publisher.html
http://old.peachfuzzer.com/v3/TestConfig.html

A couple commands...

● To validate an xml file:
○ C:/peach/peach.exe -t <some xml file>
○ or from the peach directory:

■ peach -t <some xml file>
○ -t flat parses the .xml file

● To run:
○ peach -1 --debug <some xml file>
○ runs one iteration with debug enabled

If you see...

Peach.Core.PeachException: Error, could not
load platform assembly 'Peach.Core.OS.
Windows.dll'. The assembly is part of the
Internet Security Zone and loading has been
blocked.

then do this...

Find that .dll file in your peach directory
-> right click and open Properties
-> Under the “General” tab, go to the bottom
where it says “This file came from another
computer…” and click “Unblock”, then “Apply”

see this and this for more info

https://forums.peachfuzzer.com/showthread.php?198-Could-not-load-platform-assembly-Peach-Core-OS-Windows-dll
http://kb.izenda.com/Site/KB/FAQ/How-to-unblock-your-dll-under-windows-7

Versions!

aka “I copied the tutorial but why does nothing
work....”

“Cracking Data”

“The process of interpreting valid data
according to a provided DataModel is what
Peach calls "cracking" data.”

-- Mozilla Wiki Tutorial

https://wiki.mozilla.org/Security/Fuzzing/Peach#Developing_Peach_XML_Files

Random woff.xml Demo notes
● This demo used Peach 3.1.124 on Windows 7
● Taken from wiki.mozilla tutorial

○ Note: Mozilla firefox tutorial DOES NOT WORK out
of the box for Peach 3.

● WOFF file format is Web Open Font Format
○ you can get a ttf font format from fontsquirrel.com

and then use a ttf->woff converter
○ you’ll need a “starter file” to feed to your PeachPit

● Read spec carefully! (ex. size = bits; length = bytes)

https://wiki.mozilla.org/Security/Fuzzing/Peach#Developing_Peach_XML_Files
http://people.mozilla.org/~jkew/woff/woff-spec-latest.html
http://people.mozilla.org/~jkew/woff/woff-spec-latest.html

Websockets.xml demo

What are websockets?
● persistent connection between web browser

and server

Note!!: Websockets are just an EXAMPLE here
of how to use Peach fuzzer with Firefox. Be
open to other uses of Peach Fuzz!!

http://dev.w3.org/html5/websockets/

Websockets.xml Demo

● run from peach-3.1.53\samples directory
● Add ‘WinDbgPath’ to Monitor
● Change path names (for samples_png dir for

instance to full dir path)
● Change path to point to your firefox

executable
● More info on using Websockets Publisher for

browser fuzzing

https://forums.peachfuzzer.com/archive/index.php/t-91.html

]

Where’s my firefox executable?
● If you’ve downloaded the mozilla-source, navigate

to that directory and then go to:
○ Windows: obj-.../dist/bin/firefox.exe

○ Linux: obj-.../dist/bin/firefox

○ OS X: obj-.../dist/Nightly.

app/Contents/MacOS/firefox

Other cool Peach tools

Check out the PeachFuzzBang and
PeachValidator tools in the peach directory!

A word of
encouragement....

Moar resources
● More info on using Websockets Publisher for browser fuzzing
● black hat presentation on mozilla bug hunting
● fuzzing w/ Peach tutorial (uses older version but lists some

good tools you can try
● A nice walkthrough of discovering an exploit using Peach

Fuzz for a webserver
● A Tutorial using Peach to exploit a vulnerable server (useful

to see how Peach is used). And another one
● HotFuzz and Peach overview
● gVim is a nice GUI Vim editor for windows

https://forums.peachfuzzer.com/archive/index.php/t-91.html
https://forums.peachfuzzer.com/archive/index.php/t-91.html
https://www.blackhat.com/presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-07-snyder_and_shaver.pdf
https://www.blackhat.com/presentations/bh-usa-07/Snyder_and_Shaver/Presentation/bh-usa-07-snyder_and_shaver.pdf
http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/
http://blog.techorganic.com/2014/05/14/from-fuzzing-to-0-day/
http://rockfishsec.blogspot.com/2014/01/fuzzing-vulnserver-with-peach-3.html
http://resources.infosecinstitute.com/fuzzing-vulnserver-with-peach-part-2/
http://hotfuzz.sourceforge.net/files/UserManual.pdf

Memory Inspection Tools
Valgrind, Address Sanitizer, rr

Nicholas Shahan
November 20, 2014

Using a VM?

● Enable code profiling on the CPU.

Your VM software might have an option for this.
● VMware does.

Valgrind Remember me?

● Memory access errors
● Using uninitialized values
● Double-free or mismatched malloc/new/new

[] versus free/delete/delete[]
● Overlapping src and dst pointers
● Memory leaks.

When Building Firefox

● Add to mozconfig file:
--disable-jemalloc
--enable-valgrind

● When running valgrind use the flags:
--smc-check=all-non-file --vex-iropt-register-
updates=allregs-at-mem-access

Address Sanitizer (ASan)

● Memory error detector
● Looks for:

○ Use-after-free bugs
○ Out-of-bound bugs

● Requires the Clang compiler
● Mozilla has pre-built versions of Firefox for

download.

What does Address Sanitizer do?
● Replaces the malloc and free functions
● The memory around malloc-ed regions is

poisoned.
● The free-ed memory is placed is also

poisoned.

Memory access is transformed by the
compiler:

Before:
*address = ...; // or: ... = *address;

After:
if (IsPoisoned(address)) {

 ReportError(address, kAccessSize, kIsWrite);

}

*address = ...; // or: ... = *address;

Running Firefox & Address Sanitizer

● Download a build from Mozilla
(or build your own with Clang)

● Run the executable
● Can run in GDB also

○ break __asan_report_error or
○ break AsanDie

● All errors are fatal, meaning it will only report
the first error.

rr

“rr records
nondeterministic
executions and
debugs them
deterministically”

NOTE - 32bit only!

Record, Replay, and Debug

● Record a Firefox Session
$> rr record <firefox executable>

● Replay the Recording
$> rr replay

Resources
Building Firefox
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions

Valgrind
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Valgrind

Address Sanitizer
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Firefox_and_Address_Sanitizer
https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer

rr
http://rr-project.org/
https://github.com/mozilla/rr

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Valgrind
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Valgrind
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Firefox_and_Address_Sanitizer
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Firefox_and_Address_Sanitizer
https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer
https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer
http://rr-project.org/
http://rr-project.org/
https://github.com/mozilla/rr
https://github.com/mozilla/rr

