
Buffer Overflow Attacks

Stack

Heap

Data

Text

IA32 Linux
Virtual Address Space

Lower Addresses

Higher Addresses

Stack and Base Pointers

● Stack is made up of stack frames
● Stack frames contain:

○ parameters, local variables, return addresses,
instruction pointer

● Stack Pointer: points to the top of the stack
(lowest address)

● Frame Pointer: Points to the base of the
frame

...

func2 parameter (3)

func2 parameter (2)

func2 parameter (1)

return address

old ebp

func2 local vars
…

void caller_func() {
func2(1, 2, 3);

}

int func2(1, 2, 3) {
…

}

caller_func stack frame

func2 stack frame

esp

All content from these slides, including all code
examples and attack examples come straight
from “Low-Level Software Security by Example”
by Ulfar Erlingsson, Yves Younan, and Frank
Piessens.

Great paper! Go read it!

Attack 1: Stack-based Buffer Overflow

Clobber the return address!

Review from Tuesday

Address Content

0x0012ff5c Arg two pointer

0x0012ff58 Arg one pointer

0x0012ff54 Return Address

0x0012ff50 Saved Base Pointer

0x0012ff4c Tmp Array (end)

0x0012ff48

0x0012ff44

0x0012ff40 Tmp Array (start)

Address Content

0x0012ff5c Arg two pointer

0x0012ff58 Arg one pointer

0x0012ff54 Address of Malicious
code (shellcode)

0x0012ff50

0x0012ff4c

0x0012ff48 Attack Payload

0x0012ff44

0x0012ff40

Corrupted!

Address Content

0x0012ff5c Arg two pointer

0x0012ff58 Arg one pointer

0x0012ff54 Address of Malicious
code (shellcode)

0x0012ff50

0x0012ff4c

0x0012ff48 Attack Payload

0x0012ff44

0x0012ff40 (shellcode)

Attack 1: Stack-based Buffer Overflow

Caveats:
● Only addresses above buffer are changed
● What would happen if the attack payload

contained null bytes or zeros?
● What if we corrupt %ebp instead of the

return address?

Attack 2: Heap-based Buffer Overflows

Very similar to stack-based buffer overflow
attacks except it affects data on the heap

Address Content

0x00353078 0x004013ce

0x00353074 0x00000072

0x00353070 0x61626f6f

0x0035306c 0x662f2f3a

0x00353068 0x656c6966

Address Content

0x00353078 0x004013ce

0x00353074 0x00000072

0x00353070 0x61626f6f

0x0035306c 0x662f2f3a

0x00353068 0x656c6966

Translated

pointer to strcmp function

‘\0’ ‘\0’ ‘\0’ ‘r’

‘a’ ‘b’ ‘o’ ‘o’

‘f’ ‘/’ ‘/’ ‘:’

‘e’ ‘l’ ‘i’ ‘f’

Here the buff is holding “file://foobar”

 buff

cmp

Address Content

0x00353078 0x00353068

0x00353074 0x11111111

0x00353070 0x11111111

0x0035306c 0x11111111

0x00353068 0xfeeb2ecd

Here the buff is holding an attack payload

 buff

cmp

Corrupted!

Address Content

0x00353078 0x00353068

0x00353074 0x11111111

0x00353070 0x11111111

0x0035306c 0x11111111

0x00353068 0xfeeb2ecd

Attack 2: Heap-based Buffer Overflows

● related heap objects are often allocated
adjacently

● heap metadata can get corrupted

● Caveats:
○ trickier for attacker to determine heap addresses
○ relies on contiguous memory layout

● Direct Code Injection
○ input data contains attack payload and attacker

directly manipulates instruction pointer to execute it

● Indirect Code Injection
○ input data contains attack payload but attacker uses

existing software functions to execute it

Attack 3: Jump/Return-to-libc Attack

The attacker uses libc functions to execute
desired machine code

These useful bits of libc functions are called
trampolines

qsort is going to call cmp via a function pointer. What if we
corrupt this function pointer?!

qsort(tmp, len, sizeof(int), cmp);

Notice that tmp is in %ebx

The corrupted cmp function points to a trampoline...

Remember tmp was in %ebx!
So this code:
1. sets stack pointer to the start of the tmp
2. reads a value from tmp
3. moves instruction pointer to second index of tmp

VirtualAlloc(0x70000000,
 0x1000,
 0x3000,
 0x40)

eip
esp

VirtualAlloc(0x70000000,
 0x1000,
 0x3000,
 0x40)

InterlockedExchange
(0x70000000, 0xfeeb2ecd)

Attack 3: Jump-to-libc Attack

● Often targets the System func
● Often no new process launched -- Why is

this a good thing?
Caveats:
● Need access to library source code

○ even then versions and exec envs can vary

Attack 4: Data Corruption Attack

Modify data that controls behavior without using
direct/indirect diversion from regular execution

Address Content

0x00353610 0x00353730

... ...

“ALLUSERSPROFILE=C:\Documents
and Settings\All Users”

getenv() routine grabs a
string from the environment
string table to be passed to
the system() routine.

Environment String Table

data[offset].argument = value

valueoffset
Pointer to start
of data

If offset = 0x1ffea046 and if data = 0x004033e0
data addr + 8 * offset = 0x00353610 which is the first environment string pointer!

So we are essentially setting address 0x00353610 to our value=0x00354b20

Address Content

0x00353610 0x00353730

... ...

“ALLUSERSPROFILE=C:\Documents
and Settings\All Users”

getenv() routine grabs the
string from the environment
string table to be passed to
the system() routine.

Environment String Table

If we set
 0x00353610 to our value=0x00354b20

Address Content

0x00353610 0x00354b20

... ...

“SAFECOMMAND=cmd.exe /c
“format.com c:” > value”

getenv() routine grabs the
string from the environment
string table to be passed to
the system() routine.

Environment String Table

If we set
 0x00353610 to our value=0x00354b20

Attack 4: Data Corruption Attack

Caveats:
● Not all data is corruptible or fully corruptible
● Depends on how SW handles input

○ diff between corrupting input data for a calculator vs
a command interpreter

● Not very useful by itself

Defense 1: Stack Canary

What’s the purpose of the canary?

Defense 1: Stack Canary

● Ideally....encrypt the return addresses!
○ but this is expensive

● Put a canary value above buffer on the stack
○ when function exits, check canary

Address Content

0x0012ff5c Arg two pointer

0x0012ff58 Arg one pointer

0x0012ff54 Return Address

0x0012ff50 Saved Base Pointer

0x0012ff4c All zero canary value

0x0012ff48 Tmp Array (end)

0x0012ff44

0x0012ff40

0x0012ff3c Tmp Array (start)

Defense 1: Stack Canary

● Why can’t the attacker just imitate the stack
canary?

● Which of the 4 attacks will this defend
against?

● Why can’t the attacker just imitate the stack
canary?
○ sometimes they can!
○ but often contains null bytes or newline characters
○ and/or uses a randomized cookie (harder to guess)

● Which of the 4 attacks will this work against?
○ Just stack-overflow, but can’t always defend

● Unfortunately has overhead

Defense 1: Stack Canary

Defense 2: Non-executable Data

● Make data memory non-executable
○ this is now the norm!

● Which attacks might this prevent?

Defense 2: Non-executable Data

● Make data memory non-executable
○ this is now the norm!

● Which attacks might this prevent?
○ Attacks 1 & 2 fail

■ knows not to interpret machine op codes as
instructions

○ Doesn’t defend against 3 & 4 -- why?

Defense 3: Control-Flow Integrity

● Expectations of higher-level software
dictates rules for low-level hardware
○ ex. totally legal in low-level HW to jump to machine

instruction in the middle of another op, but not the
norm for higher-level SW

● When transfer control (i.e. via return
statement or func pointer) check against
restricted set of possibilities

Defense 3: Control-Flow Integrity

Caveats:
● Some overhead
● Can defend against attacks 1 & 2 & 3 but not

4

Defense 4: Address-Space Layout
Randomization

Could also change layout in memory…

Why is this useful? What key assumption does
this rely on?
Caveats:
● A bit of overhead
● Need a non-trivial shuffling algorithm!

