$N = 3$

$2^3 = 8$

$\text{# possible permutations} = 2^3! = 8!$

Key Space = 64-bit, 2^{64} possible keys

Block size = 128 bits, 2^{128} possible inputs

$2^{128}!$ possible permutations,

Block cipher defines 2^{64} permutation over 128-bit inputs.

Key Space = 8 2-bit long = 00, 01, 10, 11

Block size = 3 bits
BC (01, 001) = 110
\[
\begin{align*}
&\quad \frac{100 \ 011 \ 000}{\text{decrypt w/ key } K'} \\
&\quad \Rightarrow 011 \ 100 \ 111
\end{align*}
\]

attack sees \(K \)

Brute force attack

For \(K = 00, 01, 10, 11 \)

try to decrypt w/ key \(K' \)

Kerchoff Principle: Attacker knows algorithm.

\# Keys = \(2^{128} \).

DES:

Keys = 56-bits \(\Rightarrow 2^{56} \) keys

Message = 64 bits long \(2^{64} \) different messages

\# total \# of perms possible \(2^{64}! \)

DES defines \(2^{56} \) permutation of 64 bits long
Naive Brute-force attack: try 2^{56} keys.
If just 2 rounds long: try 2^{98} key to learn one round key.

\[K \xrightarrow{56} \text{DES} \xrightarrow{64} D \xrightarrow{64} C \]

\[K_2 \xrightarrow{56} \text{DES}^1 \xrightarrow{64} D \xrightarrow{64} C \]

\[K_1 \xrightarrow{56} \text{DES} \]

3DES: keysite = 112 bits.
Goal: 112-bits of security.

Want brute force attack to take 2^{112} machines, 2^{114} trials.

Claim: Break 2DES w/ $\sim 2^{56}$ DES operations.

Input Attack knows $(P_1, C_1), (P_2, C_2)$

Alg:

1. For all keys K in set of 56-bit DES keys
2. Compute $C' = DES(K, P_1)$
3. Store C' in HashTable $Kw/\text{index } C'$

For all keys K' in set of 56-bit DES keys
For all keys k' in set of 56-bit DES keys, compute $c'' = \text{DES}^{-1}(k', c, k)$. Look up c'' in Hash Table. If $k' = k_0$, $k_1 = \text{Hash Table}(c'')$.

Diagram:

- **Attacker**
 - M_1
 - c_1
 - M_2
 - c_2
 - P_0, P_1
 - R

- **Box that encrypts**
 - $c_1 = \text{Enc}(k, M_1)$
 - $c_2 = \text{Enc}(k, M_2)$

- $R = \text{Enc}(k, P_0)$

Outputs b' - its guess for the value b.
Enc scheme secure against this attacker if \(b' = b \) w/ prob close to \(\frac{1}{2} \) (random guessing).

That's why we need random keys.