Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Goals for Today

- Asymmetric Cryptography
- Lab 3 this week
- HW 2 also announced this week.
- There will also be an extra credit HW assignment (can only help your grade)
Requirements for Public-Key Encryption

- **Key generation:** computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK

- **Encryption:** given plaintext M and public key PK, easy to compute ciphertext $C = E_{PK}(M)$

- **Decryption:** given ciphertext $C = E_{PK}(M)$ and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Even infeasible to learn partial information about M
 - **Trapdoor function:** Decrypt(SK,Encrypt(PK,M)) = M
Some Number Theory Facts

- Euler totient function $\varphi(n)$ where $n \geq 1$ is the number of integers in the $[1,n]$ interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1

- Euler’s theorem:
 if $a \in \mathbb{Z}_n^*$, then $a^{\varphi(n)} \equiv 1 \text{ mod } n$

\mathbb{Z}_n^*: multiplicative group of integers mod n (integers relatively prime to n)

- Special case: Fermat’s Little Theorem
 if p is prime and $\gcd(a,p) = 1$, then $a^{p-1} \equiv 1 \text{ mod } p$
RSA Cryptosystem

[Rivest, Shamir, Adleman 1977]

Key generation:
- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute n=pq and \(\varphi(n) = (p-1)(q-1) \)
- Choose small e, relatively prime to \(\varphi(n) \)
 - Typically, e=3 or e=2^{16}+1=65537 (why?)
- Compute unique d such that ed = 1 mod \(\varphi(n) \)
- Public key = (e,n); private key = (d,n)

Encryption of m: \(c = m^e \mod n \)
- Modular exponentiation by repeated squaring

Decryption of c: \(c^d \mod n = (m^e)^d \mod n = m \)
Why RSA Decryption Works

- \(e \cdot d = 1 \mod \varphi(n) \), thus \(e \cdot d = 1 + k \cdot \varphi(n) \) for some \(k \)

 Can rewrite: \(e \cdot d = 1 + k(p-1)(q-1) \)

- Let \(m \) be any integer in \(\mathbb{Z}_n \)
- If \(\gcd(m, p) = 1 \), then \(m^{ed} = m \mod p \)
 - By Fermat’s Little Theorem, \(m^{p-1} = 1 \mod p \)
 - Raise both sides to the power \(k(q-1) \) and multiply by \(m \)
 - \(m^{1+k(p-1)(q-1)} = m \mod p \), thus \(m^{ed} = m \mod p \)
 - By the same argument, \(m^{ed} = m \mod q \)

- Since \(p \) and \(q \) are distinct primes and \(p \cdot q = n \),

 \(m^{ed} = m \mod n \) (using the Chinese Remainder Theorem)

- True for all \(m \) in \(\mathbb{Z}_n \), not just \(m \) in \(\mathbb{Z}_n^* \)
Why Is RSA Secure?

- **RSA problem**: given \(n = pq \), \(e \) such that \(\gcd(e, (p-1)(q-1)) = 1 \) and \(c \), find \(m \) such that \(m^e = c \mod n \)
 - i.e., recover \(m \) from ciphertext \(c \) and public key \((n,e)\) by taking \(e^{th} \) root of \(c \)
 - There is no known efficient algorithm for doing this

- **Factoring** problem: given positive integer \(n \), find primes \(p_1, \ldots, p_k \) such that \(n = p_1^{e_1}p_2^{e_2} \ldots p_k^{e_k} \)

- If factoring is easy, then RSA problem is easy (because knowing factors means you can compute \(d \)), but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring \(n \) -- but if it is, we don’t know how
On RSA encryption

- Encrypted message needs to be in interpreted as an integer less than n
 - Reason: Otherwise can’t decrypt.
 - Message is very often a symmetric encryption key.
- But still not quite that simple
Caveats

◆ $e = 3$ is a common exponent
 - If $m < n^{1/3}$, then $c = m^3 < n$ and can just take the cube root of c to recover m (i.e., no operations taken modulo n)
 - Even problems if “pad” m in some ways [Hastad]
 - Let $c_i = m^3 \mod n_i$ - same message is encrypted to three people
 - Adversary can compute $m^3 \mod n_1n_2n_3$ (using CRT)
 - Then take ordinary cube root to recover m

◆ Don’t use RSA directly for privacy! Need to preprocess input in some way.
Sample Encryption

- 26 2 15 13 7 14 13 13 1 28 14 15 13 14 20 9 6 31 25 26 14 16 23 15 26 2 6 13 1

- P=3, Q=11, N=33, E=7, D=3
- ‘A’ converted to 1 before encryption; ‘B’ Converted to 2 before encryption; ...

- http://www.wolframalpha.com/
Integrity in RSA Encryption

- Plain RSA does not provide integrity
 - Given encryptions of m_1 and m_2, attacker can create encryption of $m_1 \cdot m_2$
 - $(m_1^e) \cdot (m_2^e) \mod n = (m_1 \cdot m_2)^e \mod n$
 - Attacker can convert m into m^k without decrypting
 - $(m_1^e)^k \mod n = (m^k)^e \mod n$

- In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r) \oplus H(M \oplus G(r))$
 - r is random and fresh, G and H are hash functions
 - Resulting encryption is plaintext-aware: infeasible to compute a valid encryption without knowing plaintext
 - ... if hash functions are “good” and RSA problem is hard
OAEP (image from PKCS #1 v2.1)

\[r \oplus H(M \oplus G(r)) \]

\[M \oplus G(r) \]
Summary of RSA

- Defined RSA primitives
 - Encryption and Decryption
 - Underlying number theory
 - Practical concerns, some mis-uses
 - OAEP
Digital Signatures: Basic Idea

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key
RSA Signatures

- Public key is \((n,e)\), private key is \(d\)
- To **sign** message \(m\): \(s = m^d \mod n\)
 - Signing and decryption are the same **underlying** operation in RSA
 - It’s infeasible to compute \(s\) on \(m\) if you don’t know \(d\)

- To **verify** signature \(s\) on message \(m\):
 \[s^e \mod n = (m^d)^e \mod n = m \]
 - Just like encryption
 - Anyone who knows \(n\) and \(e\) (public key) can verify signatures produced with \(d\) (private key)

- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures
Encryption and Signatures

- Often people think: Encryption and decryption are inverses.
- That’s a common view
 - True for the RSA \textit{primitive (underlying component)}
- But not one we’ll take
 - To really use RSA, we need padding
 - And there are many other decryption methods
 - And there are many other signing methods
Digital Signature Standard (DSS)

◆ U.S. government standard (1991-94)
 • Modification of the ElGamal signature scheme (1985)

◆ Key generation:
 • Generate large primes p, q such that q divides $p-1$
 $-2^{159} < q < 2^{160}, 2^{511+64t} < p < 2^{512+64t}$ where $0 \leq t \leq 8$
 • Select $h \in \mathbb{Z}_p^*$ and compute $g = h^{(p-1)/q} \mod p$
 • Select random x such $1 \leq x \leq q-1$, compute $y = g^x \mod p$

◆ Public key: $(p, q, g, y = g^x \mod p)$, private key: x

◆ Security of DSS requires hardness of discrete log
 • If could solve discrete logarithm problem, would extract x (private key) from $g^x \mod p$ (public key)
DSS: Signing a Message (Skim)

- **Message Hash function (SHA-1)**
- **Random secret** between 0 and q
- **Compute** \(r = (g^k \mod p) \mod q \)
- **Private key**
- **Hash function**
- **Compute** \(s = k^{-1} \cdot (H(M) + x \cdot r) \mod q \)

\((r,s)\) is the signature on M
DSS: Verifying a Signature (Skim)

Compute \(w = s'^{-1} \mod q \)

Compute \((g^{H(M')} \cdot y^{r'w} \mod q \mod p) \mod q \)

If they match, signature is valid
Advantages of Public-Key Crypto

❖ Confidentiality without shared secrets
 - Very useful in open environments
 - No “chicken-and-egg” key establishment problem
 – With symmetric crypto, two parties must share a secret before they can exchange secret messages
 – Caveats to come

❖ Authentication without shared secrets
 - Use digital signatures to prove the origin of messages

❖ Reduce protection of information to protection of authenticity of public keys
 - No need to keep public keys secret, but must be sure that Alice’s public key is really her true public key
Disadvantages of Public-Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - E.g., IPsec, SSL, SSH, ...
- Keys are longer
 - 1024+ bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete
 - (Of course, symmetric crypto also rests on unproven assumptions)
Note: Optimizing Exponentiation

How to compute $M^x \mod N$? Say $x=13$

Sums of power of 2, $x = 8+4+1 = 2^3+2^2+2^0$

Can also write x in binary, e.g., $x = 1101$

Can solve by repeated squaring

- $y = 1$
- $y = y^2 \cdot M \mod N$ // $y = M$
- $y = y^2 \cdot M \mod N$ // $y = M^2 \cdot M = M^{2+1} = M^3$
- $y = y^2 \mod N$ // $y = (M^{2+1})^2 = M^{4+2}$
- $y = y^2 \cdot M \mod N$ // $y = (M^{4+2})^2 \cdot M = M^{8+4+1}$

Does anyone see a potential issue?
Timing attacks

Collect timings for exponentiation with a bunch of messages M_1, M_2, ... (e.g., RSA signing operations with a private exponent)

Assume (inductively) know $b_3=1$, $b_2=1$, guess $b_1=1$

<table>
<thead>
<tr>
<th>i</th>
<th>$b_i = 0$</th>
<th>$b_i = 1$</th>
<th>Comp</th>
<th>Meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_1 \mod N$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_1 \mod N$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_1 \mod N$</td>
<td>X_1 secs</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_1 \mod N$</td>
<td></td>
<td>Y_1 secs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>$b_i = 0$</th>
<th>$b_i = 1$</th>
<th>Comp</th>
<th>Meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_2 \mod N$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_2 \mod N$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_2 \mod N$</td>
<td>X_2 secs</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$y = y^2 \mod N$</td>
<td>$y = y^2 \cdot M_2 \mod N$</td>
<td></td>
<td>Y_2 secs</td>
</tr>
</tbody>
</table>
Timing attacks

- If $b_1 = 1$, then set of $\{ Y_j - X_j \mid j \in \{1,2, \ldots\} \}$ has distribution with “small” variance (due to time for final step, $i=0$)
 - “Guess” was correct when we computed X_1, X_2, \ldots
- If $b_1 = 0$, then set of $\{ Y_j - X_j \mid j \in \{1,2, \ldots\} \}$ has distribution with “large” variance (due to time for final step, $i=0$, and incorrect guess for b_1)
 - “Guess” was incorrect when we computed X_1, X_2, \ldots
 - So time computation wrong (X_j computed as large, but really small, ...)
- Strategy: Force user to sign large number of messages M_1, M_2, \ldots. Record timings for signing.
- Iteratively learn bits of key by using above property.