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Goals for Today

 Asymmetric Cryptography

 Lab 3 this week
 HW 2 also announced this week.
 There will also be an extra credit HW assignment 

(can only help your grade)



Requirements for Public-Key Encryption

Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK
Encryption: given plaintext M and public key PK, 

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1
Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

   Zn*: multiplicative group of integers mod n (integers 
relatively prime to n)

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n);  private key = (d,n)

Encryption of m:  c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n, 
   med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*



Why Is RSA Secure?

 RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by taking 
eth root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find primes 
p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy (because 
knowing factors means you can compute d), but there is 
no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n -- but if it 

is, we don’t know how



On RSA encryption

Encrypted message needs to be in interpreted as 
an integer less than n
• Reason:  Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

But still not quite that simple



Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m (i.e., no operations taken module 
n)
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!  Need to pre-
process input in some way.



Sample Encryption

26 2 15 13     7 14 13 13 1 28 14     15 13          14 
20 9 6 31 25 26 14 16      23 15 26 2              6 13 1

P=3, Q=11, N=33, E=7, D=3
 ‘A’ converted to 1 before encryption; ‘B’ Converted to 

2 before encryption; ...

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11 L-12 
M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20 U-21 V-22 
W-23 X-24 Y-25 Z-26

http://www.wolframalpha.com/



Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)

r⊕H(M⊕G(r))

M⊕G(r)



Summary of RSA

• Defined RSA primitives

• Encryption and Decryption

• Underlying number theory

• Practical concerns, some mis-uses

• OAEP



Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures
Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation 
in RSA

• It’s infeasible to compute s on m if you don’t know d
To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)
 In practice, also need padding & hashing

• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

Often people think:  Encryption and decryption are 
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods
• And there are many other signing methods



Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod 
p) mod q

Public key

If they match, signature is valid



Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before 
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of 
authenticity of public keys
• No need to keep public keys secret, but must be sure that 

Alice’s public key is really her true public key



Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a 

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven 
assumptions)



Note: Optimizing Exponentiation

 How to compute Mx mod N? Say x=13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N  // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M2+1)2 = M4+2

• y = y2 * M mod N // y = (M4+2)2 *M = M8+4+1

 Does anyone see a potential issue?



i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks 

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1, 
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1



Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has 

distribution with “small” variance (due to time for final 
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has 
distribution with “large” variance (due to time for final 
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really 

small, ...)

 Strategy:  Force user to sign large number of messages 
M1, M2, ....  Record timings for signing.

 Iteratively learn bits of key by using above property.


