User Authentication

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Goals for Today

- User Authentication
- Lab 2 due this Friday
Authentication by Handwriting

[Ballard, Monrose, Lopresti]

- Maybe a computer could also forge some biometrics

<table>
<thead>
<tr>
<th>graphic language</th>
<th>crisis management</th>
<th>solo concert</th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td>target</td>
<td>target</td>
</tr>
<tr>
<td>human forgery</td>
<td>human forgery</td>
<td>human forgery</td>
</tr>
<tr>
<td>generative forgery</td>
<td>generative forgery</td>
<td>generative forgery</td>
</tr>
</tbody>
</table>

Generated by computer algorithm trained on handwriting samples
Human Factors in User Authentication

Passwords
The problem

Alice needs passwords for all the websites that she visits

 passwd

 passwd

 passwd

 passwd

 passwd
Possible solutions

• **Easy to remember**: Use *same password* on all websites. Use “*weak*” password.
 - Poor security (don’t share password between bank website and small website)

• **More secure**: Use *different, strong passwords* on all websites.
 - Hard to remember, unless write down.
Facebook founder Mark Zuckerberg 'hacked into emails of rivals and journalists'

By MAIL FOREIGN SERVICE
Last updated at 2:09 AM on 06th March 2010

Business Insider claimed he then told a friend how he had hacked into the accounts of Crimson staff.

He allegedly told the friend that he used TheFacebook.com to search for members who said they were Crimson staff.

Then, he allegedly examined a report of failed logins to see if any of the Crimson members had ever entered an incorrect password into TheFacebook.com.

In the instances where they had, Business Insider claimed that Zuckerberg said he tried using those incorrect passwords to access the Crimson members' Harvard email accounts.

In two instances, the magazine claimed, he succeeded - and was able to read emails between Crimson staff discussing the possibility of writing an article on the accusations surrounding him.

'In other words,' Business Insider claimed, 'Mark appears to have used private login data from TheFacebook to hack into the separate email accounts of some TheFacebook users.'
Classroom Survey

Who here...

• repeats 1 password across many sites?
• uses 1 password with site-specific variations?
• uses 2 passwords, one low-security and one high-security for special sites?
• uses truly unique passwords for special sites?
• uses a truly unique password on every site?
• Does something else?
Password managers

• Password managers handle creating and “remembering” strong passwords

• Potentially:
 • Easier for users
 • More secure

• Examples:
 • PwdHash (Usenix Security 2005)
 • Password Multiplier (WWW 2005)
@@ in front of passwords to protect; or F2

\[\text{sitePwd} = \text{Hash}(\text{pwd}, \text{domain}) \]

Prevent phishing attacks

Activate with Alt-P or double-click

\[\text{sitePwd} = \text{Hash}(\text{username}, \text{pwd}, \text{domain}) \]

Both solutions target simplicity and transparency.
Usenix 2006: Usability testing

- Are these programs usable? If not, what are the problems?

- Two main approaches for evaluating usability:
 - **Usability inspection** (no users)
 - Cognitive walk throughs
 - Heuristic evaluation
 - **User study**
 - Controlled experiments
 - Controlled experiments
 - Real usage

HCI is important!

This work stresses need to observe real users.
Study details

- **26 participants**, across various backgrounds (4 technical)
- Five assigned tasks per plugin
- Data collection
 - **Observational data** (recording task outcomes, difficulties, misconceptions)
 - **Questionnaire data** (initial attitudes, opinions after tasks, post questionnaires)
Task completion results

<table>
<thead>
<tr>
<th></th>
<th>Success</th>
<th>Potentially Causing Security Exposures</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dangerous Success</td>
<td>Failure</td>
<td>False Completion</td>
<td>Failed due to Previous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PwdHash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log In</td>
<td>48%</td>
<td>44%</td>
<td>8%</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Migrate Pwd</td>
<td>42%</td>
<td>35%</td>
<td>11%</td>
<td>11%</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote Login</td>
<td>27%</td>
<td>42%</td>
<td>31%</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Update Pwd</td>
<td>19%</td>
<td>65%</td>
<td>8%</td>
<td>8%</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Login</td>
<td>52%</td>
<td>28%</td>
<td>4%</td>
<td>0%</td>
<td>16%</td>
</tr>
<tr>
<td>Password Multiplier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log In</td>
<td>48%</td>
<td>44%</td>
<td>8%</td>
<td>0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Migrate Pwd</td>
<td>16%</td>
<td>32%</td>
<td>28%</td>
<td>20%</td>
<td>N/A</td>
</tr>
<tr>
<td>Remote Login</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Update Pwd</td>
<td>16%</td>
<td>4%</td>
<td>44%</td>
<td>28%</td>
<td>N/A</td>
</tr>
<tr>
<td>Second Login</td>
<td>16%</td>
<td>4%</td>
<td>16%</td>
<td>0%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Questionnaire responses

Problem: Transparency

- **Unclear** to users **whether actions successful or not.**
- Should be obvious when plugin activated.
- Should be obvious when password protected.
- Users feel that they **should** be able to **know** their **own password.**
Problem: Mental model

Users seemed to have misaligned mental models

• Not understand that one needs to put “@@” before each password to be protected.
• Think different passwords generated for each session.
• Think successful when were not.
• Not know to click in field before Alt-P.
• PwdHash: Think passwords unique to them.
When “nothing works”

- Tendency to try all passwords
- A poor security choice.
- May make the use of PwdHash or Password Multiplier worse than not using any password manager.
- Usability problem leads to security vulnerabilities.

HCI is important!
Human Factors in User Authentication

CAPTCHAs
Human Verification

Problem:
- Want to make it hard for spammers to automatically create many free email accounts
- Want to make it difficult for computers to automatically crawl some data repository

Need a method for servers to distinguish between
- Human users
- Machine users

Approach: CAPTCHA
- Completely Automated Public Turing Test to Tell Computers and Humans Apart
CAPTCHAs

captcha.net

Idea: “easy” for humans to read words in this picture, but “hard” for computers
How did they do it? Most online ticket Web sites like Ticketmaster employ CAPTCHA technologies, which requires users to read images that are recognizable to the human eye but confusing to computers, and type them into a box before buying tickets.

The defendants, however, worked with computer programmers in Bulgaria to develop a technology that allowed a network of computers to impersonate individual visitors to online ticket vendors. The ticket vendors did not immediately recognize the purchases as computer-generated, so these "CAPTCHA Bots" let Wiseguy Tickets to flood ticket vendors as soon as tickets went on sale and purchase tickets faster than any human.
'Captcha' squiggles give way to ad pitches on security tests

By Alicia McCarty, USA TODAY

Start saying goodbye to those squiggly words or random letters you sometimes have to type in on website security tests when buying event tickets or participating in online contests.

Slogans and sales pitches are taking their place on a growing number of sites.

"Captcha ads offered us a new way to engage consumers and help reinforce branded messages," Zoé Zeigler, a Toyota spokeswoman, said in an e-mail.

Universal has also advertised with Solve Media since last year. Media supervisor Lindsay Dye said type-in video ads were used to promote the movies Devil, Catfish and, most recently, Little Fockers. After watching a trailer, Internet users were asked to type in the films' release dates.

"This is a great way to ensure people are watching our ad work," she said.
Detour (Later)

Detour through the slides for this paper:

Re: \textsc{CAPTCHAs} – Understanding CAPTCHA-Solving Services in an Economic Context

Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker and Stefan Savage
University of California, San Diego
{mmotoyam, klevchen, ckanich, dlmccoy, voelker, savage}@cs.ucsd.edu

Abstract

Reverse Turing tests, or \textsc{CAPTCHAs}, have become an ubiquitous defense used to protect open Web resources from being exploited at scale. An effective \textsc{CAPTCHA} resists existing mechanistic software solving, yet can be solved with high probability by a human being. In alphanumeric characters that are distorted in such a way that available computer vision algorithms have difficulty segmenting and recognizing the text. At the same time, humans, with some effort, have the ability to decipher the text and thus respond to the challenge correctly. Today, \textsc{CAPTCHAs} of various kinds are ubiquitously deployed for guarding account registration, comment post...
Phishing

❖ “The Emperor’s New Security Indicators”
 • http://www.usablesecurity.org/emperor/emperor.pdf

❖ “Why Phishing Works”
 • http://people.seas.harvard.edu/~rachna/papers/why_phishing_works.pdf

❖ In one study: 27 out of 27 people entered personal information if HTTPS was changed to HTTP (no SSL)

❖ Other security indicators not very effective (lock icons, ...)

❖ If a site looks “professional”, people likely to believe that it is legitimate
Experiments at Indiana University

- Reconstructed the social network by crawling sites like Facebook, MySpace, LinkedIn and Friendster
- Sent 921 Indiana University students a spoofed email that appeared to come from their friend [Jagatic et al.]
Figure s: Illustration of phishing experiment: sp Bloggingn social networkn and other public
data is harvested; tp data is correlated and stored in a relational database; up heuristics are
used to craft "spoofed" email message by Eve "as Alice" to Bob ia friendk; vp message is
sent to Bob; wp Bob follows the link contained within the email and is sent to an unchecked
redirect; xp Bob is sent to attacker

Bob is prompted for his University
credentials; —p Bob's credentials are verified with the University authenticator; 9ap Bob is
successfully phished; 9bp Bob is not phished in this session; he could try againp

This supports the
importance of rapid
takedown
n in the process of causing o

pending phishing sites to become
nonoperativen whether by legal means ithrough the ISP of the phishing sitek or by means
of denial of service attacks — both prominently used techniquesp Figure tB reports the
distributions of the number of times that victims authenticated or refreshed their credentialsp

The reason for repeated visits to the simulated phisher site is thatn as shown in Figure sn
victims who successfully authenticated were shown a fake message indicating that the server
was overloaded and asking them to try again laterp A real phisher would not need to do
this of coursen but we wanted to count how many victims would catch on or continue to be
deceived; those who repeatedly authenticate give us a lower bound on the number of victims
who continue to be deceivedp The logolog plots in Figure tB highlight distributions with
long tails — some users visited the site iand disclosed their passwordsk over —r timesp This
in spite of many ways to detect the phishing attackn epgpn mouseoovern host name lookupn

From: Alice@indiana.edu (spoofed by Eve)
To: Bob@indiana.edu
Subject: This is Cool!

Hey, check this out!

https://www.indiana.edu/%7e%70hi%73%68%69n%67...

Alice
Experiments at Indiana University

- Reconstructed the social network by crawling sites like Facebook, MySpace, LinkedIn, and Friendster
- Sent 921 Indiana University students a spoofed email that appeared to come from their friend
- Email redirected to a spoofed site inviting the user to enter their secure university credentials
 - Domain name clearly distinct from indiana.edu
- 72% of students entered their real credentials into the spoofed site

[Jagatic et al.]
More Details

- Control group: 15 of 94 (16%) entered personal information
- Social group: 349 of 487 (72%) entered personal information
- 70% of responses within first 12 hours
- Adversary wins by gaining users’ trust
More Details

<table>
<thead>
<tr>
<th></th>
<th>To Male</th>
<th>To Female</th>
<th>To Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Male</td>
<td>53%</td>
<td>78%</td>
<td>68%</td>
</tr>
<tr>
<td>From Female</td>
<td>68%</td>
<td>76%</td>
<td>73%</td>
</tr>
<tr>
<td>From Any</td>
<td>65%</td>
<td>77%</td>
<td>72%</td>
</tr>
</tbody>
</table>
More Details (Class Year)

<table>
<thead>
<tr>
<th>Class</th>
<th>Control</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior</td>
<td>5%</td>
<td>68%</td>
</tr>
<tr>
<td>Junior</td>
<td>13%</td>
<td>69%</td>
</tr>
<tr>
<td>Sophomore</td>
<td>26%</td>
<td>71%</td>
</tr>
<tr>
<td>Freshman</td>
<td>14%</td>
<td>76%</td>
</tr>
<tr>
<td>Other</td>
<td>50%</td>
<td>76%</td>
</tr>
</tbody>
</table>
More Details (Major)

<table>
<thead>
<tr>
<th>Major</th>
<th>Control</th>
<th>Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>19%</td>
<td>72%</td>
</tr>
<tr>
<td>Education</td>
<td>50%</td>
<td>68%</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>19%</td>
<td>71%</td>
</tr>
<tr>
<td>Science</td>
<td>0%</td>
<td>80%</td>
</tr>
<tr>
<td>Technology</td>
<td>0%</td>
<td>36%</td>
</tr>
<tr>
<td>Other</td>
<td>14%</td>
<td>67%</td>
</tr>
</tbody>
</table>
Poor Usability Causes Problems
Importance

◆ Why is usability important?
 ● People are the critical element of any computer system
 – People are the real reason computers exist in the first place
 ● Even if it is possible for a system to protect against an adversary, people may use the system in other, less secure ways

◆ Next
 ● Challenges with security and usability
 ● Key design principles
 ● New trends and directions
Issue #1: Complexities, Lack of Intuition

Real World

Electronic World

We can see, understand, relate to.

Too complex, hidden, no intuition.
Issue #1: Complexities, Lack of Intuition

- Mismatch between perception of technology and what really happens
 - Public keys?
 - Signatures?
 - Encryption?
 - Message integrity?
 - Chosen-plaintext attacks?
 - Chosen-ciphertext attacks?
 - Password management?
 - ...
Issue #2: Who’s in Charge?

Real World

Complex, hidden, but doctors manage

Electronic World

Adversaries in the electronic world can be intelligent, sneaky, and malicious.

Users want to feel like they’re in control.

Complex, hidden, but users manage

SSL/TLS

XSS

RSA

Buffer overflows

Adversaries in the electronic world can be intelligent, sneaky, and malicious.

Complex, hidden, but doctors manage

Users want to feel like they’re in control.
Issue #2: Who’s in Charge?

- Systems developers should help protect users
 - Usable authentication systems
 - Red/green lights
- Software applications help users manage their applications
 - P3P for privacy control
 - PwdHash, Keychain for password management
- Some say: Can we trust software for these tasks?
“It won’t happen to me!” (Sometimes a reasonable assumption, sometimes not.)

Schneier on Security
A weblog covering security and security technology.

May 02, 2005

Users Disabling Security
It’s an old story: users disable a security measure because it’s annoying, allowing an attacker to bypass the measure.

A [REDACTED] accused in a deadly courthouse rampage was able to enter the chambers of the judge slain in the attack and hold the occupants hostage because the door was unlocked and a buzzer entry system was not activated, a sheriff’s report says.

Security doesn't work unless the users want it to work. This is true on the personal and national scale, with or without technology.
Issue #4: No Accountability

- Issue #3 is amplified when users are not held accountable for their actions
 - E.g., from employers, service providers, etc.
 - (Not all parties will perceive risks the same way)
Issue #5: Awkward, Annoying, or Difficult

- Difficult
 - Remembering 50 different, “random” passwords
- Awkward
 - Lock computer screen every time leave the room
- Annoying
 - Browser warnings, virus alerts, forgotten passwords, firewalls

Consequence:
- Changing user’s knowledge may **not** affect their behavior
Issue #6: Social Issues

- **Public opinion, self-image**
 - Only “nerds” or the “super paranoid” follow security guidelines

- **Unfriendly**
 - Locking computers suggests distrust of co-workers

- **Annoying**
 - Sending encrypted emails that say, “what would you like for lunch?”
Issue #7: Usability Promotes Trust

- Well known by con artists, medicine men

- Phishing
 - More likely to trust professional-looking websites than non-professional-looking ones
Issues with Usability

1. Lack of intuition
 - See a safe, understand threats. Not true for computers

2. Who’s in charge?
 - Doctors keep your medical records safe, you manage your passwords

3. Hard to gage risks
 - “It would never happen to me!”

4. No accountability
 - Asset-holder is not the only one you can lose assets

5. Awkward, annoying, or difficult

6. Social issues

7. Usability promotes trust
Response #1: Education and Training

Education:
- Teaching technical concepts, risks

Training
- Change behavior through
 - Drill
 - Monitoring
 - Feedback
 - Reinforcement
 - Punishment

May be part of the solution - but not the solution
Response #2: Security Should Be Invisible

Security should happen
- Naturally
- By Default
- Without user input or understanding

Recognize and stop bad actions

Starting to see some invisibility
- SSL/TLS
- VPNs
- Automatic Security Updates

See Dan Simon’s slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt
Response #2: Security Should Be Invisible

◆ “Easy” at extremes, or for simple examples
 - Don’t give everyone access to everything

◆ But hard to generalize

◆ Leads to things not working for reasons user doesn’t understand

◆ Users will then try to get the system to work, possibly further reducing security
 - E.g., “dangerous successes” for password managers

See Dan Simon’s slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt
Response #3: “Three-word UI:” “Are You Sure?”

- Security should be invisible
 - Except when the user tries something dangerous
 - In which case a warning is given

- But how do users evaluate the warning? Two realistic cases:
 - Always heed warning. But see problems / commonality with Response #2
 - Always ignore the warning. If so, then how can it be effective?

See Dan Simon’s slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt
Response #4: Focus on Users, Use Metaphors

- Clear, understandable metaphors:
 - Physical analogs; e.g., red-green lights

- User-centered design: Start with user model

- Unified security model across applications
 - User doesn’t need to learn many models, one for each application

- Meaningful, intuitive user input
 - Don’t assume things on user’s behalf
 - Figure out how to ask so that user can answer intelligently

See Dan Simon’s slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt
Response #5: Least Resistance

- “Match the most comfortable way to do tasks with the least granting of authority”
 - Ka-Ping Yee, Security and Usability

- Should be “easy” to comply with security policy

- “Users value and want security and privacy, but they regard them only as secondary to completing the primary tasks”
 - Karat et al, Security and Usability